
Learning Data Transformation Rules through Examples:
Preliminary Results∗

Bo Wu
Information Sciences Institute

University of Southern
California

4676 Admiralty Way
Marina del Rey, CA

bowu@isi.edu

Pedro Szekely
Information Sciences Institute

University of Southern
California

4676 Admiralty Way
Marina del Rey, CA
pszekely@isi.edu

Craig A.Knoblock
Information Sciences Institute

University of Southern
California

4676 Admiralty Way
Marina del Rey, CA
knoblock@isi.edu

ABSTRACT
A key problem in many data integration tasks is that data
is often in the wrong format and needs to be converted into
a different format. This can be a very time consuming and
tedious task. In this paper we propose an approach that
can learn data transformations automatically from exam-
ples. Our approach not only identifies the transformations
that are consistent with all examples, but also recommends
the transformations that most likely transform the rest of
unseen data correctly. The experimental results show that
in six transformation scenarios our approach produces good
results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.2 [Artifical Intelligence]: Automatic Programming—
Program synthesis

General Terms
Design

Keywords
data transformation, program synthesis

1. INTRODUCTION
∗This research is based upon work supported in part by the
Intelligence Advanced Research Projects Activity (IARPA)
via Air Force Research Laboratory (AFRL) contract num-
ber FA8650-10-C-7058. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of IARPA, AFRL, or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IIWEB ’12 Scottsdale, AZ USA
Copyright 2012 ACM 978-1-4503-1239-4/12/05 ...$10.00.

Currently, many applications rely on data gathered from
multiple data sources with different formats. To utilize the
data, users often need to normalize it, transforming each
type of data into a single format. Figure 1 shows two exam-
ples. Suppose the user has a data set with addresses where
some have the city name at the beginning and some have the
city name at the end. The user would like to normalize the
data so that all the city names are at the beginning. To do
so, the user must transform those addresses that have the
city name at the end, moving the city name to the begin-
ning, moving the comma between city name and the street
address. The figure also shows an example with phone num-
bers where the user wants to insert parenthesis around the
first three digits and delete the hyphen. In general, transfor-
mations involve a sequence of operations that reorder, insert
and delete tokens. The objective of this work is to enable
users to easily construct transformation programs that they
can apply to entire data sets.

One common approach to construct such data transfor-
mation programs is to use regular expressions. For example,
the transformations for the example shown in Figure 1 can
be written in Perl as follows:
• s/([∧,])+,([∧,])+/$2,$1
• s/(\d){3}-(.+)/($1)$2

Writing scripts such as these is difficult for most users. In
order to ease the burden of manually writing transforma-
tion programs, we propose a learning approach where users
provide examples of transformed data such as those shown
in the second column in Figure 1. Our approach does not
require users to teach the system step by step and does not
require users to know the transformation language. Users
simply select a value they want to transform and edit it
to represent it in the desired format. The system uses the
transformed value to learn a transformation program con-
sistent with the example and applies it to the rest of data.
Users then review these transformed results. If there are
incorrectly transformed results, the user provides a new ex-
ample for one of the incorrect entries. The system uses the
newly provided example to re-learn a transformation pro-
gram and apply it to the rest of data. Users repeat this
process until satisfied with all the transformed results.

For example, as shown in Figure 2, the user wants to put
the city name at the beginning and put a comma between the
city name and street address. The user first provides an ex-
ample “London,1 Lombard Street” for the original string “1
Lombard Street,London”. The system then performs three

Figure 2: User provides examples for the system to learn transformation programs

Figure 1: Two data transformation scenarios

steps. In the first step, it generates several transformation
programs that are consistent with the examples and applies
them to the entire dataset. In the second step, the system
ranks the transformation programs based on an analysis of
the transformed data, preferring rules that leave the data set
in a more homogenous state. In the third step, the system
shows the transformed data for the top K transformation
programs (our figure shows the top 1). The user can select
one as the correct and final one or provide a new example. In
our example, the user sees that the result for “1 Dominick
Street,New York” is not correct (panel 2) and provides a
new example “New York,1 Dominick Street” for the system
to relearn the transformation program (panel 3). After the
second example, all data is transformed correctly (panel 4),
and the user accepts the learned transformation.

Learning transformation programs from examples is chal-
lenging because in general it is possible to generate many
transformation programs consistent with a small number of
examples. For instance, the following two transformation
programs are consistent with the first row in Figure 1:
• Move the 7th token to position 0 and move the “,” to

position 2
• Move the token after “,” to position 0 and move the “,”

to position 1
When applying the above transformations to the second row
shown in Figure 1, the transformed results would be
• New,1 Dominick Street York
• New, York1 Dominick Street York

These transformed results are obviously wrong. The reason
is that some of the interpretations consistent with one ex-
ample or several examples may not be applicable to other
examples. Moreover, as users only provide a few examples,
these cannot represent all the variations in the data, so some
transformation programs that are consistent with all exam-
ples might not able to transform all test data correctly. We

face two technical challenges: 1. Identifying as many trans-
formation programs as possible that are consistent with all
examples. 2. Ranking all the consistent transformation pro-
grams to identify the correct transformation programs.

In order to solve the above challenges, we present an ap-
proach to infer correct transformation programs from a few
given examples that can transform both training and test-
ing data correctly. In the evaluation section, we test our
system on a representative set of data transformation sce-
narios. The results show that our approach in most cases
can generate correct transformation programs for all edit-
ing scenarios within 3 examples, can often rank the correct
transformation program as the top choice, and the ranking
is significantly better than random.

2. PROBLEM
We define the set of transformation programs that the sys-

tem can generate using a grammar (Figure 3). A transfor-
mation program consists of an arbitrary number of 3 kinds of
editing operations (line 0), namely insert, move and delete.
Line 1 specifies that one insert operation contains 2 pieces of
information: the tokens to be inserted and the place where
they should be inserted. Line 2 specifies that move oper-
ations need to know what elements to move and where to
move them to. Line 3 specifies that deletion operations need
to know what elements to delete. The term “tokenspec”
in line 6 specifies the target subtoken sequence that a user
wants to edit. It could be specified by using the type of the
token or the actual content of the token. As in Figure 2, if we
want to move “London”, the “tokenspec” could be “London”
or WRDTYP (word type token). The target token sequence
can also be specified based on position using “range,” which
has a start and end position. The actual position is decided
by “positionquantifier,” which can be a landmark or an ab-
solute position. For the above example, the start position
of “London” specified by “posquantifier” could be either 0 or
“,”, which is a landmark used to indicate the start of city
name. The term “where” is used to specify the operation’s
destination, which has a similar definition to start or end.
This transformation grammar is rich, but it is not univer-
sal. Our goal in this phase of the work was to validate our
approach using a non-trivial grammar.

We formulate our problem as follows. LetG = (ins|mov|del)∗
be the set of possible transformations. E = {(si, s

′
i)|si ∈

S, s
′
i ∈ D} is the definition of the given examples; (si, s

′
i)

Figure 3: Transformation grammar used to describe
common editing operations

represents one example; S is the set of all original values
and D is the set of all values. T , the set of transformations
that are consistent with examples is defined as T = {t ∈
G|t(si) = s

′
i}. Given a ranking function m(S, S

′
) based on

the original data S and the transformed data S
′
, our data

transformation problem can be formally defined as

t∗ = argmin
t
{m(S, S

′
) S

′
= t(S), t ∈ T} (1)

3. APPROACH OVERVIEW
We decompose our problem into two parts. In the first

part we develop efficient algorithms to compute the set T of
transformations consistent with the examples provided. In
the second part we propose a learning approach to specify
the ranking function m.

3.1 Search Space
The search space for transformation programs is (ins|mov|-

del)∗. Without loss of generality we refactor this space into
(ins)∗(mov)∗(del)∗. The insert phase (ins)∗, inserts tokens
that appear in the target token sequence but were not part
of the original token sequence. The move phase (mov)∗ re-
orders the tokens so that they appear in the same ordering
as in the target sequence. The delete phase (del)∗ removes
tokens that do not appear in the target token sequence. We
do insertions first so that the movement and deletion phases
can use the inserted tokens as landmarks. We do deletions
last so as to not remove landmarks that can be used to spec-
ify other operations.

In order to reduce the size of the search space, we in-
troduce subgrammar spaces, which are a disjunction of re-
stricted versions of the whole grammar space. Each sub-
grammar space is defined by a particular sequence of edit
operations. We use the following algorithm to generate sub-
grammar spaces.
• Step 1: Tokenize the original and target strings and

add special start and end tokens.
• Step 2: Generate alignments between examples.
• Step 3: Generate a sequence of edit operations for each

example using the alignments.
• Step 4: Identify correspondences among editing se-

quences of different examples.

• Step 5: Identify the grammar non-terminals that cover
the common values across examples.

In step 1, our approach tokenizes all the examples. For
example“1 Lombard Street,London” is tokenized as START()

NUMTYP(1) BNKTYP() WRDTYP(Lombard) BNKTYP() WRD-

TYP(Street) SYBTYP(,) WRDTYP(London) END(). NUMTYP,

BNKTYP, WRDTYP and SYBTYP represent different token
types (number, blank, word or symbol). The START() and
END() identify the start and end of the original token se-
quence.

In step 2, our approach uses a simple alignment algorithm
to identify the same tokens in the original and target token
sequences (e.g., the token “London” in Figure 1). When
tokens appear multiple times, the algorithm generates all
possible alignments.

In step 3, we generate a set of possible edit operation
sequences from each alignment. For the pair “1 Lombard
Street,London” and “London,1 Lombard Street”, the align-
ment algorithm determines that all tokens in the target to-
ken sequence can be mapped to the original token sequence.
Consequently, only move operations are needed. In the move
phase, the alignment results would indicate the new position
of the token NUM(1) is behind WRDTYP(London). A mov op-
eration such as mov(7,9,0) would be generated, which means
moving the subtoken sequence located within position 7 and
9 to position 0. In the delete phase, the algorithm deletes
the START and END tokens.

In step 4, in order to generate data transformations that
cover all examples, we cluster the edit operations derived
from the same transformation program. We cluster together
the edit sequences with the same length and edit operator
type of different examples. For our scenario shown in fig-
ure 1, one possible cluster is mov(7,7,0), mov(7,7,1), del(2,2),
del(8,8) for the first example and mov(7,9,0), mov(6,6,3),
del(4,4), del(10,10) for the second example.

In step 5, we generalize the operator sequences from mul-
tiple examples to identify the candidate values for a set of
non-terminals of each example. Then we intersect these
candidate values to produce the candidate values for this
subgrammar space. Based on the result of step 4, the non-
terminal “tokenspec” (Figure 3, line 6) would have an empty
value set as WRDTYP(New) BNKTYP() WRDTYP(York) and
WRDTYP(London) cannot be generalized in the grammar.

Finally, the original grammar space (ins|mov|del)∗ has
been reduced to (mov11mov

1
2del

1
3) ∨ (mov21mov

2
2del

2
3del

2
4) ∨

· · · .

3.2 Search for Consistent Programs
To identify consistent transformation programs, we search

for consistent programs in the subgrammar spaces. Figure 4
illustrates the idea. Different rectangles represent different
subgrammar spaces, where search trees are built in these
subgrammar spaces. Each internal node of the search tree
represents the current token sequence and the edge rep-
resents the transformation rule generated from an editing
component such as movji . The goal is to identify the path
that leads from the original token sequence to the target
token sequence. However, this search space is huge. The
example shown in Figure 2, whose minimal edit sequence is
of length, generates 50 subgrammar spaces, and the steps
generate over 400 rules. The total number of possible trans-
formation programs would be 4003 ∗ 50. Actually in many
other scenarios, the length of the edit sequence exceeds 10

Figure 4: Using the UCT algorithm to identify con-
sistent transformation programs

and the number of subgrammar spaces exceeds 1000. It is
impossible to consider all possible transformations.

We use a sampling-based search algorithm to identify trans-
formation programs (editing path) in these spaces. The al-
gorithm consists of following steps:
• Choose a subgrammar space to explore.
• Repeatedly use the searchOneTime algorithm within

the chosen subgrammar to identify consistent programs.
• Repeat this procedure a predefined number of times.

searchOneTime Algorithm.
Our searchOneTime algorithm uses the UCT algorithm[5],

an extension of the UCB algorithm[1], to balance the explo-
ration and exploitation in a large search space. It has been
successfully applied to the Computer GO game [3]. The
basic idea is as follows. As each step has a huge number
of branches to explore, it is impossible to go through each
branch to identify the right path in the search tree. Only
a small number of branches are sampled during each step
to be evaluated and be explored further. The basic idea
of UCT is to explore the branches that have a known high
score frequently, but also visit the rarely visited nodes. We
use the UCT algorithm to perform a one time search in one
subgrammar space (Figure 5).

function searchOneTime(state)
 if terminal(sttate):
 return getUCBScore(state)
 endif
 ruleSet = sampleRules(state)
 ffor each rule of ruleSet:
 newState

i

i == applyRule rule state
va

i

i

(,)
. newState llue getUCBScore newStatei= ()

 endfor
 mStatte = the state with minal value of all childrenn state
 mState.value = searchOneTime(mStatee)
 update(state, minState)
 return statte.value
end function

Figure 5: UCT Algorithm

sampleRules() is used to randomly sample a set of rules
based on the current state. applyRule() applies rulei on the
current state leading to a new state. getUCBScore, the scor-
ing function defined in Equation 2 is used to evaluate these
new states. update() uses the value returned by mState as
the root’s value. Finally, the algorithm selects the child state

with minimal score to explore.

It = argmin
i
{V i,Ti(t−1)) − θ ∗ ct−1,Ti(t−1)}, cn,m =

√
ln(n)

5m
(2)

This function is used to evaluate children states to identify
one that has the minimum value. t is the number of times
that the parent state has been explored. Ti(t− 1) indicates
the number of times that the ith child has been explored. V
is the average heuristic value of the ith child, averaged over
the Ti(t−1) times that it has been explored. θ is a coefficient
used to adjust the weight of c, the term used to balance the
exploitation and exploration. c grows when the parent has
been visited often and the child has only been visited few
times. It also means that this child becomes more likely to
be explored next time.

Heuristic Values.
Heuristic values, which correspond to the Vi,T (t−1) shown

in Equation 2 are used to evaluate the subgrammar space
nodes and internal search tree nodes. As these two kinds of
nodes are different, we use different evaluation functions for
them. The heuristic used to evaluate the subgrammar space
is listed in Equation 3.

Vi,t =
si,T (t)

li ∗ Z
,Z =

k∑
i

Vi,t (3)

si,T (t) is the average value for the initial state. li is the

length of edit sequence that is generated from the ith sub-
grammar space where the shorter edit sequence is preferred
as it provides a more concise way of editing. Z is a normal-
izing term. The heuristic used to evaluate internal search
tree nodes is a normalized version of edit distance between
the current token sequence and the target token sequence.

3.3 Transformation Ranking
The previous step can generate many transformation pro-

grams given that many transformation programs are consis-
tent with a small number of examples. The idea for ranking
them is based on analyzing their effects on the entire data
set. Consider the second scenario in Figure 1, if we just
use the first row as an example, two transformation pro-
grams are consistent: The first one: “insert the parentheses
at 0 and 2, delete the token after parenthesis and before the
number,” produces Result 1, below. The second one: “in-
sert the parentheses at 0 and 2, delete the token after the
parenthesis and before 7231,” produces Result 2, which fails
on the second row and third row.

Result 1 Result 2
(020)7231 8808 (020)7231 8808
(097)3263 8848 (097)-3263 8848
(020)7297 5600 (020)-72975600

Even though Result 2 may well be what the user wants,
we would like to rank Result 1 higher because the result is
more homogeneous. We implement this heuristic using a lo-
gistic regression classifier to classify the transformed results
as regular or irregular. We measure the homogeneity of the
transformed data using a set of features that depend on all
the rows of the data set. These features belong to three
categories. The first category captures the homogeneity of
inserted tokens by calculating the entropy of the count of

inserted tokens. The second category captures the homo-
geneity of the reordered tokens by calculating the entropy
of the count of different move directions. The third category
captures the homogeneity of the deleted tokens by calculat-
ing entropy of the count of deleted tokens. In our example
we have a feature that computes the entropy of the deleted
hyphen token. In Result 1, the number of hyphen tokens
deleted in each row is 1, 1, and , so the entropy is 0. In Re-
sult 2, the hyphen was not deleted in the second and third
rows, so the number of deleted hyphen tokens is 1, 0, and 0,
so the entropy is larger than 0.

We rank the transformation programs using the confi-
dence of the logistic regression classifier that classifies the
results as regular or irregular. Unless there is a clear win-
ner, we show users the top K results. Our hypothesis, to
be tested in future user studies, is that users will be able
to quickly see which result is correct or closer to what they
are expecting. If the results are incorrect, the expectation is
that examples provided on the results that are closer to what
users want will enable the system to more quickly converge
on the desired transformation program.

4. RELATED WORK
Data transformation used in metadata and data ware-

house means converting data from a source data format
into desired data. The most closely related work is Data
Wrangler [4]. It uses the transformation language defined
in Potter’s Wheel [7] and provides a nicer GUI, which pro-
vides several transformation suggestions based on user in-
put. Users can specify desired transformations by editing
examples, selecting from suggested rules, or transforming
rules using menus. However, both Data Wrangler [4] and
Potter’s Wheel [7] require users to provide examples step by
step, which usually requires a user to give a sequence of ex-
amples for a simple transformation scenario. Liang et al. [6]
aims to learn the text editing program through examples.
They adopt a multitask learning model to take advantage
of shared subtasks to identify the most probable edit pro-
grams. The training data used in their approach are also
edit sequences, which consists of the intermediate steps for
a transformation task.

Tuchinda et al. [8] present a Mashup by demonstration
system. It integrates extraction, cleaning, integration and
display together into one system that allows a user focus on
the data rather than the process. The data cleaning step re-
ferred in this paper uses examples to select transformations
from a library of predefined rules. As there are many types
of possible transformations, it is hard to build a compre-
hensive library of predefined rules. Our approach builds the
rules from the examples. Google Refine1 supports both data
cleaning and data transformation. Users can easily specify
common transformations using menus (e.g., split fields based
on separators), but they must specify more complex trans-
formations using its scripting language.

Christen et cl. [2] present a name and address cleaning
and standardization approach to convert the data into its
standard form using a correction list. These data are then
tagged using a lookup table and then segmented into dif-
ferent fields using semantic labels in a HMM model. It is
different from our work as it only aims to solve the address
and name normalization through training a HMM model on

1http://code.google.com/p/google-refine/

Table 2: Average number of examples required to
generate correct transformation programs

Dataset Example Count Correct TPs
address1 1.25 33.5
address2 5.25 3.75

date1 1 2
date2 1.5 3.5
tel1 1 223
tel2 1 60.75
time 2.5 1.75

large training datasets.

5. EXPERIMENTS
In this section, we introduce two experiments that provide

strong evidence that our approach can identify consistent
transformation programs and rank them effectively.

Our experimental data set consists of 6 transformation
scenarios. Each scenario has 50 rows of data containing
both the original string and its corresponding transformed
value. These scenarios with their descriptions are shown in
Table 1.

5.1 Identifying Correct Programs
In this experiment we simulate the user’s behavior. We

first choose one example randomly and learn a set of trans-
formation programs consistent with it. Then we evaluate
these transformation programs on all the data. If all these
transformation programs produce at least one incorrect re-
sult, we add to the set of examples an entry corresponding
to a randomly chosen incorrect result. We repeat this pro-
cess iteratively until the system finds a transformation pro-
gram that transforms both the training data and test data
correctly. The parameters for the search algorithm are set
manually. The search depth is set to 6 and the number of
rules sampled for each state is set to 10. 50% of the total
number of subgrammar spaces are sampled and explored.
For each sampled subgrammar space, we run the search al-
gorithm 200 times.

Table 2 shows the results of running this experiment 20
times. The table shows the average number of examples re-
quired to learn a correct transformation program (Example
count) and the average number of correct transformation
programs found (Correct TPs).

The number of examples required to infer a correct trans-
formation program is small in all scenarios except for ad-
dress2, which required on average 5.25 examples. In this
scenario it is important to choose examples with different
number of words in the city name. Random selection of ex-
amples may choose examples that eliminate programs that
are too specific (e.g., move the token “London”). Choosing
an example with a different number of words would rule out
programs that do not specify the what part based on an an-
chor as required to transform the data correctly. Such an
example would also rule out the over-specific programs that
contain a single word in the city name. We plan to inves-
tigate active learning algorithms capable of suggesting the
items that users should edit to provide new examples.

5.2 Ranking Results
To test our ranking algorithm, we first use our search al-

gorithm to compute a set of transformation programs con-

Table 1: Dataset Description
Dataset First Row Description
address1 (Brankova 13 , Brankova 13) Replace with a blankspace
address2 (1 Lombard Street,London , London,1 Lombard Street) Move city name to front; put comma in the middle

date1 (2010-07-30 , 07/30/2010) Reverse the order and replace the hyphen with slash
date2 (13/05/2010 , 2010-05-13) Put month & date in front, replace hyphen with slash
tel1 (Tel: 020-7928 3131 , 020-7928 3131) Remove the prefix
tel2 (020-8944 9496 , (020)8944 9496) Add parenthesis around first 3 digits; remove hyphen
time (1 January 2007 4:48pm , January 1,2007 4:48pm) Change the order of first 3 tokens and insert a comma

sistent with the minimum number of examples required to
compute at least one correct transformation program. Then
we use our ranking algorithm to rank all the transformation
programs consistent with these examples.

Figure 6: Ranking results.

Figure 6 shows the results of running this experiment 20
times. For each scenario we count the number of times that
our ranking algorithm places the correct transformation pro-
gram in the top 9%, in the 10 to 19%, etc. Each bar in the
figure shows this count normalized by the number of consis-
tent transformation programs in each run. Our ranking al-
gorithm is able to place the correct transformation program
in the top 10% of consistent transformation programs close
to 40% of the time. Moreover, the ranking algorithm always
places the correct program in the top 50%, outperforming
random guessing. The experiment also shows that the char-
acteristics of the data set significantly affect the effectiveness
of the ranking algorithm. The algorithm performs poorly in
the address2 scenario, which consists only of move opera-
tions where our features cannot detect that a multi-word
city name is not moved as a unit. The algorithm performs
well in scenarios that feature a mix of operations.

6. CONCLUSION
This paper introduced a data transformation approach.

It learns data transformations from user-provided examples.
We define a grammar to describe common user editing be-
haviors. Our approach then reduces the larger grammar
space to a disjunction of subgrammar spaces using examples.
We apply a UCT-based search algorithm to identify consis-
tent transformation programs in these subgrammar spaces.
To handle the many interpretations, we use a transformation
ranking method to identify the correct transformation pro-
grams. Our experimental results show that in most cases
our approach generates a correct transformation program
using fewer than three examples, ranks all correct transfor-
mation programs within the top 50%, and 40% of the time
ranks the correct transformation program in the top 10% of
transformation programs consistent with the examples.

7. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Mach.
Learn., 47(2-3):235–256, 2002.

[2] P. Christen, T. Churches, and J. X. Zhu. Probabilistic
name and address cleaning and standardisation. In
Proceedings of the Australasian Data Mining Workshop,
2002.

[3] S. Gelly and D. Silver. Achieving master level play in 9
x 9 computer GO. In D. Fox and C. P. Gomes, editors,
AAAI, pages 1537–1540. AAAI Press, 2008.

[4] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: interactive visual specification of data
transformation scripts. In Proceedings of the 2011
annual conference on Human factors in computing
systems, CHI ’11, pages 3363–3372, 2011.

[5] L. Kocsis and C. SzepesvÃ ↪ari. Bandit based
monte-carlo planning. In In: ECML-06. Number 4212
in LNCS, pages 282–293. Springer, 2006.

[6] P. Liang, M. I. Jordan, and D. Klein. Learning
programs: A hierarchical Bayesian approach. In
International Conference on Machine Learning
(ICML), 2010.

[7] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In Proceedings of the
27th International Conference on Very Large Data
Bases, VLDB ’01, pages 381–390, 2001.

[8] R. Tuchinda, C. A. Knoblock, and P. Szekely. Building
mashups by demonstration. ACM Transactions on the
Web (TWEB), 5(3), July 2011.

