
Minimizing User Effort in Transforming Data by Example∗

Bo Wu
Computer Science Department

University of Southern
California

4676 Admiralty Way
Marina del Rey,CA

bowu@isi.edu

Pedro Szekely
Information Sciences Institute

University of Southern
California

4676 Admiralty Way
Marina del Rey, CA
pszekely@isi.edu

Craig A. Knoblock
Information Sciences Institute

University of Southern
California

4676 Admiralty Way
Marina del Rey, CA
knoblock@isi.edu

ABSTRACT
Programming by example enables users to transform data for-
mats without coding. To be practical, the method must syn-
thesize the correct transformation with minimal user input.
We present a method that minimizes user effort by color-
coding the transformation result and recommending specific
records where the user should provide examples. Simulation
results and a user study show that our method significantly
reduces user effort and increases the success rate for synthe-
sizing correct transformation programs by example.

Author Keywords
Data Transformation, Programming by Example,
Recommendation

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation: User Inter-
faces

INTRODUCTION
Many mashup applications rely on data from multiple
sources. Unfortunately, using data from multiple sources of-
ten requires format transformation, which is highly task de-
pendent. It often requires the user to specify the transforma-
tion, which is typically done by writing scripts [4] or demon-
strating a sequence of edit operations [5] [6]. In order to ease
the burden of specifying the transformations, Gulwani [3] de-
veloped a programming by example approach.

∗This research was supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Air Force Research Lab-
oratory (AFRL) contract number FA8650-10-C-7058. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of
IARPA, AFRL, or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IUI’14, February 24–27, 2014, Haifa, Israel.
Copyright c© 2014 ACM 978-1-4503-2184-6/14/02..$15.00.
http://dx.doi.org/10.1145/2557500.2557523

Table 1: Text Format Transformation Scenario
Raw Data Target Data
Lois Anderson Anderson, Lois
knud Merrild Merrild, knud
robert boardman howard howard, robert boardman
... ...
William J. Forsyth Forsyth, William J.
John G. Dunn Dunn, John G.

Programming by example approach asks a user to provide ex-
amples to synthesize the transformation program instead of
having her write a program directly. In Table 1, a user wants
to change the name format. To do this, a user only needs
to provide an example for a record showing the target value.
For instance, she would provide “Anderson, Lois” for the first
record. Once she provides that example, the approach auto-
matically generates the transformation program that is consis-
tent with the examples. It then applies this program to the rest
of the data and transforms those records automatically. The
user then examines the results. If any record is transformed
incorrectly, she enters the target value for that record. This
process goes through multiple rounds until all the results are
correct. During the process, she actively takes part in these
activities:

1. Examining the results
2. Deciding which example to provide

All these activities repeat for several rounds until the user
stops. Since a dataset can easily have thousands of records,
the activities listed above can be very labor intensive and error
prone. We identify several challenges as follows.

Firstly, the user needs to find incorrectly transformed results
from possibly thousands of records. These records can ei-
ther cause the transformation program to exit abnormally or
simply have incorrect results. The user must identify these
records so that the synthesizing approach can refine the pro-
gram to handle the unseen cases correctly.

Secondly, the user cannot easily tell which record to la-
bel. Using different records as examples provides different
amounts of information for the program to learn. Using the
most informative record reduces the total number of examples
that the user needs to provide.

Thirdly, the user does not know whether the synthesized
transformation is as she expected. As the user generally does

1

not want to read the synthesized program, the system does
not typically show it. She usually has no idea of what trans-
formations are synthesized and applied.

In order to address the challenges above, we developed an
approach to recommend records for the user and visualize the
transformation to facilitate the decision-making on which ex-
ample she should provide. By recommending records and
color-coding the transformations, our system can reduce user
effort in making decisions on which record to provide as an
example and make the user aware of incorrectly transformed
results. This approach to recommending records and visualiz-
ing the transformations provides the following contributions:

1. Reduces the number of iterations
2. Reduces the effort in examining the results
3. Increases the success rate

SYNTHESIZING TRANSFORMATION PROGRAMS
Gulwani [3] developed a programming by example approach
that defines a string transformation language. This language
supports a restricted, but expressive form of regular expres-
sions, which includes conditionals and loops. The approach
synthesizes transformation programs from this language us-
ing examples. The transformation program is a concatenation
of several segments. Each segment consists of a start and an
end position expression.

As shown in Figure 1, the program consists of four seg-
ments: last name, comma, blank space and first name seg-
ment. A segment can either be a constant string like the
comma segment or describe how to extract the correspond-
ing parts from the raw data. The second type of segment has
two position expressions: start and end position expressions.
The positions can be specified using (1) an absolute position,
or (2) restricted regular expressions that identify the context
of the given position, which can be represented as (leftcxt,
rightcxt, occ). “leftcxt” describes the left context of the po-
sition, “rightcxt” describes the right context and“occ” is the
occurrence of the position. For example, the start position
of “Lois” can be specified as (START, UWRD, 1) or an abso-
lute position 0. Here, “START” represents the beginning of the
raw value. “END” is for the end of the raw value. “UWRD”
represents an uppercase letter. “LWRD” means a continuing
sequence of lower letters. The “BNK” means a blank space.
Therefore, (START,UWRD, 1) means the first occurrence of a
position, which is at the beginning of the raw data and has a
uppercase token at its right.

In order to generate such transformation programs, Gulwani’s
approach first tokenizes the original value and target value
of an example into two token sequences. He then groups
the target token sequence into different segments. The ap-
proach then determines different ways to generate these seg-
ments from the original token sequence. As shown in Fig-
ure 1, “Anderson, Lois” is divided into multiple segments.
The segments shown in the brackets are “Anderson”, “,” , “ ”,
and “Lois”. These segments are then concatenated in order to
make up the transformation program.

If there are multiple examples, the approach uses an efficient
algorithm to construct a version space for each example and

Figure 1: Transformation Program for Generating Target Val-
ues from Raw Values

to merge them into a version space consistent with the maxi-
mum number of examples. However, if the examples cannot
be covered by a single version space, the algorithm partitions
the examples and generates a version space for each parti-
tion individually. A conditional expression can be learned to
distinguish multiple different version spaces. This approach
also supports loop expressions by detecting whether continu-
ous segments of one program can be merged.

APPROACH OVERVIEW
Our approach builds upon Gulwani’s approach [3] to rec-
ommend incorrectly transformed records using active learn-
ing. Our system first recommend the most informative record
from the records that cause transformation program to exit
with error. When all the records are successfully transformed,
it will then recommend the most questionable record that may
have incorrect results.

The screenshot of our user interface in Figure 2 has the fol-
lowing areas. (1) “Examples You Entered” shows all previ-
ous examples. (2) “Recommended for Examining” shows our
recommended record. (3) “All Records” shows all the records
in a multi-page table. On the left are raw data and on the right
are transformed values.

The user first checks whether the recommended record is cor-
rect. If it is not, she can provide the target value for this entry
to teach the system to learn this new variation. If the result
is already correct, she can then check the transformed values
in the “All Records” area to identify any incorrect result. As
she might type an incorrect example by accident, she can eas-
ily find all the previous examples and cancel the one with an
error.

We can see that all the original values and transformed values
are color coded, which shows the correspondence between
substrings in the transformed values and substrings in the
original values. This color-coding can help the user under-
stand what transformation is currently applied to the data and
also makes it easier to identify incorrect results by displaying
irregular color patterns.

RECOMMENDING INFORMATIVE RECORDS
Certain records can cause the transformation program to exit
abnormally. For example in Figure 2, the user entered “An-
derson, Lois” as the target value for “Lois Anderson”. The
synthesized program exits with an error on both record A and
B. (Our system keeps the values the same as the raw values

2

Figure 2: User Interface

Table 2: Fail or Success for Each position Expression
Record LStart LEnd BStart BEnd FStart FEnd

A 0 1 1 0 0 1
B 1 1 1 1 0 1

and will not color-code these records.) Choosing the informa-
tive record to provide an example can minimize the number
of examples to synthesize the correct program.

Our approach recommends such informative records for the
user. As we mentioned before, the transformation program
consists of a number of position expressions, which specify
how to locate the start or end position of a segment. Any po-
sition expression that fails to locate any position on a record
will cause the transformation program to fail in that record.
By tracking the interpretation results of each individual po-
sition expression, we can get the number of failed position
expressions for each record and then identify the record with
the largest number of failed position expressions.

Table 2 shows the interpreted results for each position ex-
pression on two records. L represents last name, B repre-
sents blank and F represents first name. “LStart” means the
start position expression for last name. According to Table 2,
record A fails on both the last name and first name start posi-
tion expression, while the record B fails on the first name start
position. As seen from Figure 1, the last name start position
expression is (BNK, UWRD, 1) and the first name start position
is (START, UWRD). Both expressions require the right context
to be an upper case token. However, record B has a lower case
first name, while both the first name and last name in record
A are lower case token. Therefore, if we provide an example
for record A, we can teach the transformation program that
both first name and last name can be lower case words.

Our program may contain conditional expression and loop ex-
pression. For conditional expression, our approach evaluates
the condition of the record and chooses the correct program
for the record. We then calculate the score as described be-
fore. For loop expression, the loop will break if any mis-
match happens. Therefore, we actually use the number of
mismatches in the last iteration to calculate the score for the
record.

To identify the most informative record, we count the num-
ber of failed position expressions for each record and rec-
ommend the one with the largest number of failed position
expressions.

RECOMMENDING QUESTIONABLE RECORDS
Records can have incorrect results, which requires the user to
examine the results more carefully to detect the error. For ex-
ample, in Figure 3 the synthesized program generates results
for all records. However, after scrutinizing the data, we can
see the results for record C and record D are still incorrect.
The end position expression of the first or middle name is
(LWRD,BNK,-1) after entering two examples as shown in Fig-
ure 3. The expression aims to find a location, whose left is
a lower case token and right is a blank. “-1” means the first
occurrence when searching backwards. As record C and D
use “.” as the left context for the end position, which doesn’t
match the condition, the expression cannot match at the cor-
rect position. Instead, it keeps scanning backwards until it
reaches the end of the first word. Although the result satisfies
the position expression, it is incorrect.

To capture these incorrect results, we found the transforma-
tion can also be evaluated based on the content before and
after the transformation. From Figure 3, we can see that the
examples keep all the content in the raw value. However, for
record C and D, the middle names do not get copied to the
transformed value. We can compare other records against the
examples. Thus, the record that is the most different from the
examples is most likely to be incorrect. We recommend this
record as questionable record for the user to examine.

We represent the transformation using a set of features. There
are two types of features:

Transformation features: These features aim to capture the
content changed after applying the transformation program.
We use these features to represent the transformation.

1. Token count difference: this type of features calculates the
difference between the token counts before and after the
transformation. Taking “.” as an example, it appears once
in record C before transformation and appears 0 times after.
Thus, the feature value for “.” count difference is 1 for
record C. We track the count difference for a set of tokens
such as all the punctuation, numbers and tokens appearing
in at least 10% records. Each token in this set will be a
feature in the final feature vector.

2. Reorder: this type of feature calculates the inversion num-
ber of the target string. We assign each token in the re-
sult a number oi, which is its order in the original token
sequence. We then compute the inversion number using
count({(oi, oj) | i < j and oi > oj}).

Figure 3: Transformed Results are Incorrect

3

Result format features: these features aim to capture the for-
mat of transformed result. Using these features, we can iden-
tify the records that have different formats from examples.
We use the counts of various tokens in the result for these
features. Each token count corresponds to one result format
feature. The tokens used in this type of feature are the same
as the tokens used in token count difference features.

Given the feature set, we follow these steps to detect the ques-
tionable record:

1. Convert all pairs of raw and transformed values into fea-
ture vectors Vi using the features defined above. Convert
all examples into features vectors Ei in the same way.

2. Obtain the mean vector Ē of the m examples by Ē =∑m
i Ei

m
3. Calculate the Euclidean distance of each record Vi with the

mean vector Ē of examples and identify the questionable
record V ∗ by

∥∥V ∗ − Ē
∥∥ = maxVi

{
∥∥Vi − Ē

∥∥}
After identifying the questionable record, we will recommend
it for the user to examine. As our program can contain con-
ditional expressions, our approach will partition the records
based on the conditions. We then identify the candidate ques-
tionable record for each partition and recommend the record
with maximal distance to its partition’s mean vector.

EVALUATION
In this section, we present the results of two experiments. One
is a real user study and the other is a simulated evaluation. 1

User Study
To test whether our approach reduces user effort and in-
creases the likelihood that a user can correctly transforms a
real dataset, we conducted a comparative user study between
the system with and without extensions in real world trans-
formation scenarios. The system without extensions hid the
suggested records and color coding from users.

Dataset
The data came from 5 museums with thousands of records of
artworks and artists represented in different formats. The goal
was to extract the common properties across the 5 museums
and convert them into the same format.

We identified 41 scenarios and grouped them based on the
8 common properties. We then randomly chose 1 from each
group and used these 8 scenarios for the user study. We kept a
maximum of 500 records and the average number of records
was 300. We give the first several examples for each scenario
to demonstrate the transformations in Table 3.

Participants and Method
We recruited 10 graduate students and randomly divided them
into 2 equal groups. Group 1 used the system without exten-
sions and Group 2 used the same system but with extensions.
We first trained participants using a simple scenario and then
asked them to work on the 8 scenarios by orally describing
1 Data is available at www.isi.edu/integration/data/
IUI2014. The code is available as the data transformation tool of
Karma(http://www.isi.edu/integration/karma/).

Table 4: User Study Results

Scen
Without Extensions
(group 1)

With Extensions
(group 2)

Avg time (sec.) Success rate Avg time (sec.) Success rate
s1 30 1.0 35 1.0
s2 119 0.6 41 1.0
s3 110 0.6 40 1.0
s4 unsolved 0.0 unsolved 0.0
s5 201 0.2 95 1.0
s6 unsolved 0.0 142 1.0
s7 unsolved 0.0 unsolved 0.0
s8 191 0.4 95 1.0
All 130.2 0.35 74.6 0.75

the task. We asked Group 2 participants to use the recom-
mendation if it were applicable. If the user could not finish
the scenario in 5 minutes, that scenario is regarded as a fail-
ure.

Results
We used the following metrics to measure how each group
performed on each scenario.

1. Average Time: the average time in seconds used by the
users who transformed all the records in the scenario cor-
rectly.

2. Success Rate: the ratio of the users in the group that trans-
formed all the records in the scenario correctly.

According to Table 4, both systems failed on s4 and s7, where
the success rate was 0 and average time was “unsolved” as no
user transformed the two scenarios correctly. We can see that
group 2 used less time and achieved a higher rate on all the
other scenarios except s1. Users saved 55 seconds on average
of all successfully transformed scenarios and increased their
success rate for 0.4 on average across all scenarios.

The time saving shown in the user study was largely because
the user in group 2 did not need to examine all records to iden-
tify the ones with bad results. The more examples a scenario
required, the more rounds it took the user to examine the re-
sults. Taking scenario 1 as example, because the user only
needed to provide one example to derive the correct program
and both groups examined the results before submitting, the
group 1 users did not spend more time examining the results.
The two groups had very close average times as seen in Ta-
ble 4. On the other hand, for the rest of scenarios (s2, s3, s5
and s8), an average of 8.2 examples were required for group
1 users to correctly synthesize the program, while the users in
group 2 only used an average of 6.5. The users in group 2 not
only spent less time examining the results in each round, but
also used fewer rounds. Therefore, these scenarios showed
significant time savings.

The user study also showed the group 2 users achieved higher
success rate. For group 1 users, many reported it was very
exhausting to examine hundreds of records. They generally
needed to provide 8.2 examples to synthesize the correct pro-
gram. Even after providing a new example, they still needed
to recheck all the records as previously correctly transformed
records may have become incorrect this time. Many users
simply did not check whether all the results are correct. They

4

www.isi.edu/integration/data/IUI2014
www.isi.edu/integration/data/IUI2014
http://www.isi.edu/integration/karma/

Table 3: Scenarios used in the user study
Scenario Orignal Value Target Value

s1:extract the artist birth date 1860-1945 1860
1870-1955 1870

s2:extract the artist death date active c. 1859 - 1910 1910
born 1936 none

s3:extract the first degree of the art work dimension 15 3/8 in. 15 3/8
20 x 24 1/4 in. 20

s4: extract the width of the artwork dimension
W: 26 in, H: 36 in. 26
H: 28 in, W: 50 in 50

H: 5 1/2 in, W: 8 1/2 in 8 1/2

s5: extract the third degree of the artwork dimension 11.5 in WIDE x 1.5 in DEEP(29.21 cm WIDE x 3.81 cm DEEP) 1.5
24 in HIGH(60.96 cm HIGH) none

s6: extract the content in the parenthesizes
Despair none

Untitled (Grindelia) Grindelia
California Landscape ((Hills around Sonoma)) Hills around Sonoma

s7: extract the date that the artwork was made
California,1970 1970

Los Angeles, Calif.,July 7, 1970 July 7, 1970
Los Angeles, Calif., Los Angeles, Calif., none

s8: change the format to put surname at the end Wyeth, Andrew Newell Andrew Newell Wyeth
C. C. Bohm C. C. Bohm

randomly chose several pages and browsed the results. They
submitted the results when they found all the records in those
pages were correct. However, they missed records with bad
results in the pages that they did not check.

The reason that both groups failed on s4 and s7 is because the
two scenarios were beyond the ability of Gulwani’s approach.
For s4, the approach cannot learn the end position expression
for extracting the number after width. The right context for
the end position is “ in.”, while the number after the “H” also
has same context. The left context for the end position cannot
be learned either. The first row’s left context is (“W” “:” BNK
NUM). The third row’s left context is (“W” “:” NUM BNK NUM
“/” NUM). After generalization over these two contexts, we get
(NUM), which also has a false match position in the second
row. As both the left and right context of the end position
expression cannot locate the correct position, a transforma-
tion program cannot be learned in this case. For scenario 7,
we want to extract the date or the year from the string. The
start position is indiscernible here. The target substring may
appear after the third comma, second comma or first comma.
The substring itself may also start with a word or a digit too.
As s4 and s7 are beyond the synthesizing programs capabil-
ity, both our system and the baseline system cannot derive a
correct program.

Finally, the system with recommendations succeeded in all
the scenarios that can be solved by using more than one exam-
ple with significantly less time and higher success rate com-
pared to the system without recommendation.

Simulation Experiment
Our simulation tests whether our approach uses fewer exam-
ples and examines fewer records to transform all the records
correctly, when compared to three other simulated record se-
lection strategies.

Dataset
The dataset consists of 20 scenarios that we collected from
Google user forum and the 6 solvable scenarios from the mu-
seum dataset. We went through all the posts from July 2012
to July 2013 and randomly collected 20 scenarios. As some

posts may not post the data directly, we created the data based
on the description in the post. The number of records for each
scenario is 75.

Method
We designed three alternative record examining strategies to
approximate user record examining behaviors and compare
them with our recommendation-based strategy. Each strategy
examines the results in the order described below till it iden-
tifies a record with an incorrect result.

1. Longest record: examine the record with the longest result
first.

2. Shortest record: examine the record with the shortest re-
sult first.

3. Top down: examine the record from top down order.

Results
In this experiment, we measured the average number of ex-
amples and examined records on 2 datasets (Tables 5).

The “Example” shows the average number of examples for
each strategy to solve each dataset. The percentage in the
parenthesizes shows the percentage of examples that can be
saved by using recommendation. The “Record” shows the
average number of examined records. The percentage in the
parenthesizes presents the percentage of examined records
that can be saved by using recommendation. On average, our
strategy needed 3 examples and examined 3 records on forum
dataset; it needed 6.5 examples and examined 17 records on
museum dataset. Our recommendation cannot alway identify
the incorrect result. We noticed that for our strategy exam-
ined more records than the number of examples in scenario
6 of museum dataset. Our strategy used the first row as the
first examples. The synthesized program transformed all the
records to “none”. Our approach cannot recommend the right
record then, as our system did not know the transformation
was to extract the content within parenthesizes before getting
such examples.

In Tables 5, by using recommendation, the system used fewer
examples and examined a lower percentage of records than

5

Table 5: Comparing Recommendation with Other Strategies
Datasets Longest Shortest Top Down Recmd

Forum Example 4.1 (26%) 4.3 (30%) 4.2 (29%) 3
Record 48 (94%) 21 (86%) 18 (83%) 3

Museum Example 8.3 (21%) 8.8 (26%) 9.2 (29%) 6.5
Record 186 (91%) 162 (90%) 154 (89%) 17

the three alternative strategies. One tail t test suggested the
improvements were statistically significant (p < 0.05).

RELATED WORK
In this section, we review the most related data transforma-
tion systems and active learning approaches. OpenRefine [4]
and Potter’s wheel [8] allow the user to specify edit opera-
tions. OpenRefine [4] is a tool for cleaning messy data. Its
language supports regular expression style of string transfor-
mation and data layout transformation. Potter’s Wheel [8]
defines a set of transformation operations and let users grad-
ually build transformations by adding or undoing transforma-
tions in an interactive GUI. Many PBD [2] approaches can
learn edit operations by asking the user to demonstrate the
operations. Lau’s system [6] and Data Wrangler [5] learn
from the user’s edit operations. Lau [6] described a system
that can learn from a user’s edit operations and generate a se-
quence of text editing programs using the version space alge-
bra. Data Wrangler [5] is an interactive tool for creating data
transformation. It uses the transformation operations defined
in Potter’s wheel [8]. Besides supporting string level transfor-
mation, it also supports data layout transformation including
column split, column merge, fold and unfold. Our approach
is different from these two types of systems as it only requires
users to enter the target data.

Gulwani [3] developed an approach to synthesis a program
through input and output string pairs. Gulwani mentioned
that his approach can highlight the entry, which has two or
more alternative transformed results. This method needs to
generate multiple programs and evaluate these programs on
all the records, which requires more processing time. Our ap-
proach improves Gulwani’s work by providing recommenda-
tion. To generate the recommendation, we only need one pro-
gram and its results on the records. Topes [9] let the user spec-
ify the data pattern or learn the pattern from examples. Pro-
grammers can implement transformation functions between
patterns to perform data transformation across different for-
mats.

CueFlik [1] shows users an overview of the learned concept.
Users can examine this overview to provide new examples.
This overview is essentially a high level abstraction of the
instances in the image feature space. Our approach recom-
mends records from two spaces: program space and text fea-
ture space. LAPIS [7] highlight the texts that have potentially
incorrect matches. Their approach identifies the matches that
are different from the majority of matches. Besides help-
ing the user identify problematic inputs, our approach also
identifies the most informative record. Wolfman [10] extends
Lau’s [6] work by reducing the user effort using a mix ini-
tiative approach combining several interaction modes. Our
work is inspired by his work of shifting the user’s attention to

a particular example. His approach suggests those examples
that can reduce the ambiguity of the version space. However,
our approach focus on acquiring the unseen examples. As
our program can be a disjunct of multiple transformations,
the new example does not necessarily reduce the ambiguity
of version space.

CONCLUSION AND FUTURE WORK
This paper presents a general data transformation tool aiming
to minimize user effort in synthesizing transformation pro-
grams by example. This tool recommends records to help the
user avoid examining a large quantity of transformed results.
In our simulated experiment and user study, the experimen-
tal results show the tool saves user time, reduces number of
examples and increases success rates significantly.

We identified one interesting problem for the future work.
When the users were working on the two unsolvable cases,
they complained that adding new examples may correct some
incorrect result but also make some previous correct results
incorrect. It was very frustrating for the users. They did not
know whether they were making progress in transforming the
dataset toward the target format in general. However, the sys-
tem can show the status of the current results so that the user
can quit when most of the records are transformed into a good
shape. It may be easier for user to process these semi-finished
data than handle the raw data directly.

REFERENCES
1. Amershi, S., Fogarty, J., Kapoor, A., and Tan, D.

Overview based example selection in end user
interactive concept learning. In UIST (2009), 247–256.

2. Cypher, A., Halbert, D. C., Kurlander, D., Lieberman,
H., Maulsby, D., Myers, B. A., and Turransky, A., Eds.
Watch what I do: programming by demonstration. MIT
Press, 1993.

3. Gulwani, S. Automating string processing in
spreadsheets using input-output examples. In POPL
(2011), 317–330.

4. Huynh, D. F., and Stefano, M. OpenRefine
http://openrefine.org.

5. Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J.
Wrangler: interactive visual specification of data
transformation scripts. In CHI (2011), 3363–3372.

6. Lau, T., Wolfman, S. A., Domingos, P., and Weld, D. S.
Programming by demonstration using version space
algebra. Mach. Learn. (2003), 111–156.

7. Miller, R. C., and Myers, B. A. Outlier finding: Focusing
user attention on possible errors. In UIST (2001), 81–90.

8. Raman, V., and Hellerstein, J. M. Potter’s wheel: An
interactive data cleaning system. In VLDB (2001).

9. Scaffidi, C., Myers, B., and Shaw, M. Topes: Reusable
abstractions for validating data. In ICSE (2008), 1–10.

10. Wolfman, S. A., Lau, T. A., Domingos, P., and Weld,
D. S. Mixed initiative interfaces for learning tasks:
Smartedit talks back. In IUI (2001), 167–174.

6

	Introduction
	Synthesizing transformation programs
	Approach Overview
	recommending informative records
	recommending questionable records
	Evaluation
	User Study
	Dataset
	Participants and Method
	Results

	Simulation Experiment
	Dataset
	Method
	Results

	Related Work
	conclusion and future work
	REFERENCES

