Maximizing Correctness with Minimal User Effort to Learn
Data Transformations

Bo Wu
Computer Science Department
University of Southern California
4676 Admiralty Way
Marina del Rey,CA
bowu365@gmail.com

ABSTRACT

Data transformation often requires users to write many trivial and
task-dependent programs to transform thousands of records. Re-
cently, programming-by-example approaches enable users to trans-
form data without coding. A key challenge of these PBE approaches
is to deliver correctly transformed results on large datasets, as these
transformation programs are likely to be generated by non-expert
users. To address this challenge, existing approaches aim to identify
a small set of potentially incorrect records and ask users to examine
these records instead of the entire dataset. However, as the trans-
formation scenarios are highly task-dependent, existing approaches
cannot capture the incorrect records for various scenarios. In this
paper, our approach learns from past transformation scenarios to
generate a meta-classifier to identify the incorrect records. Our
approach color-codes these transformed records and then presents
them for users to examine. The approach allows users to either
enter an example for a record transformed incorrectly or confirm
the correctness of a record. Our approach can learn from the users’
labels to refine the meta-classifier to accurately identify the incorrect
records. Simulation results and a user study show that our method
can identify the incorrectly transformed records and reduce the user
efforts in examining the results.

Categories and Subject Descriptors

H.5.2. [Information Interfaces and Presentation]: User Inter-
faces; D.2.4. [Software Engineering]: Program Verification; K.8.1.
[Personal Computing]: Database processing

Keywords

Programming by Example, Data Transformation, Program Synthesis

1. INTRODUCTION

500 million users are using spreadsheets to manage their data.
These users come from various backgrounds and lack the neces-
sary programming skills to automate their tasks. Programming-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

1UI’'16, March 07 - 10, 2016, Sonoma, CA, USA

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4137-0/16/03. .. $15.00

DOL: http://dx.doi.org/10.1145/2856767.2856791

Craig A. Knoblock
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA
knoblock@isi.edu

by-example (PBE) approaches [12] enable these users to generate
programs without coding. Recently, these approaches have been
successfully applied to data transformation problems [6] to save
users from writing many task-dependent transformation programs.
To use a PBE system for data transformation, users are only
required to provide input-output pairs (also referred to as example).
The PBE system generates the programs that are consistent with
given examples. For example, Figure[I[b) shows the dimensions
for a set of artworks. To extract the first degree (height) from the
dimension, the user enters “10” as the target output for the first entry.
The PBE approach generates programs that can transform the inputs
into corresponding outputs specified in the examples. It applies the
program to the rest of records to transform them. If the user finds
any incorrect output, she can provide a new example, the approach
refines the program to make it consistent with all given examples.
The user often interacts with the system for several iterations and
stops when she determines that all records are transformed correctly.
Despite the success of generating programs using PBE approaches,
the correctness of the results is still an issue. Real-world data trans-
formation often involves thousands of records with various formats.
Each record consists of raw data (input) and transformed data (out-
put). The users are often not aware of all the variations of the data
that they should transform. They know whether the records are
transformed correctly when they see them. They lack the insight of
the unseen formats of the records buried in the middle of datasets.
To help users verify whether the records are transformed correctly,
existing PBE approaches [6||13||19] provide recommendations or
highlight certain records for the users. The user checks these records
and provides new examples for those incorrect records. Here, we
consider a record as transformed correctly (referred to as a correct
record), when it is transformed into the expected format. Otherwise,
the record is considered incorrect (referred to as an incorrect record).
To generate such recommendations, there are several challenges.
First, the dataset is usually huge. The users need to see the results
to provide additional examples if necessary on the fly. Fully trans-
forming the entire dataset and analyzing all the transformed records
to generate recommendations takes too long to be practical.
Second, the users’ intentions are highly task-dependent and there
is not a universal rule for determining whether the results are correct.
Meanwhile, the approach should be able to hypothesize users’ inten-
tions accurately to provide useful recommendations. For example,
the scenario in Figure[I|a) is to encode different texts into numbers.
The users want to transform the three records into “3”, “2” and “1”
respectively. After giving the two examples in the dashed rectangle,
the learned program does not transform the ‘Fewer than 100’ into
the expected value ‘1°, as it has not seen an example of that type
before. The problem is ‘Fewer than 100’ has different words from

http://dx.doi.org/10.1145/2856767.2856791

Raw (Input) Transformed (Output)
1| 300 or more 3 E E E
" i | Examples !
|| Between100and299 |2 . L. x
Fewer than 100 3 Incorrect
record
(a) incorrect record has a different input format
____Raw(input) | Transformed (Output)
|| 107 x8 10
i i 1 Examples !
1| 26"Hx24"Wx12.5" 126 __________________ Lol |
3x6" 3x6 Incorrect
record

(b) incorrect record has a different output format

Figure 1: Different rules for recognizing incorrect records

the inputs of the two examples when they are represented using
bag-of-words model [4]]. To capture this incorrect record, we can
use a rule to identify the records that have different words in the
input from the examples. However, in Figure Ekb), the counts of
numbers, blank spaces, quotes and “x” in the inputs are the same
for the third and the first record. We need to use a different rule
that identifies the records with different output formats to locate the
incorrect records since the output of the third record contains an “x”
and blank spaces while the first two records do not have.

Third, recommendation should place the incorrect records at the
beginning of the recommended list so that users can easily notice
these records. Otherwise, users have to examine many correct
records before identifying the incorrect one, which would be a
burden.

Fourth, users are often too confident with their results to examine
the recommended records, which they regard as an extra burden [|14}
10]]. Even when there are incorrect records in the recommendation,
the users may ignore them and stop the transformation.

To address the challenges above, our approach samples records to
allow users to focus on a small portion of the entire dataset. It statis-
tically guarantees that a user-specified percentage of the records of
the entire dataset are transformed correctly with certain confidence
when all records in the small sample are transformed correctly. Our
approach also maintains a library of different classifiers representing
different rules for checking whether a record is transformed correctly.
It uses an ensemble method to combine these different classifiers
to automatically identify incorrect records in various scenarios. To
save users’ time in checking the recommendations, we provide users
two ways to label the recommended records: (1) users can confirm a
recommended record is correct or (2) they can provide the expected
outputs for the incorrect records. Our approach then learns from
these labels and provides users with refined recommendations. Fi-
nally, besides providing the recommendation that exposes incorrect
records to users, we have also developed a method that identifies a
minimal set of records that the user should examine before finishing
the transformation.

Our contributions are summarized below:

e minimizing the user effort in obtaining a user-specified cor-
rectness

e allowing users to focus on a small sample of a large dataset

e combining multiple classifiers based on different perspectives

for verifying the correctness of records

o refining recommendations when users confirm certain recom-
mendations are correct or incorrect

e controlling the user overconfidence by requiring users to ex-
amine certain records before finishing the transformation.

2. PROGRAMMING BY EXAMPLE

Our approach is mainly built on the IPBE approach [21} |20} 22],
which extents the previous PBE approach [[6]. The approach is based
on a domain specific transformation language (DSL), which sup-
ports a restricted, but expressive form of regular expressions, which
also includes conditionals and loops. The approach synthesizes
transformation programs from this language using examples.

Transform(value)

Conditional
statement

|switch(classify(value)): |

case format, :
pos, = value indexOf (START , NUM, 1)
e ation | POS, = valueindexOf (NUM , ", 1)
progam output= substr(pos,, pos,)
case format, :
pos, = value indexOf (START , NUM, 1)
e on| POS, = valueindexOf (NUM, BNK, 1)
program output=substr(pos, pos,)

return output

Figure 2: An example transformation program

branch = segment, + segment, + ...

segment = const | substr(p,,p,,offset = 0) | loop(w,branch)
p = indexOf (leftcxt ,rightcxt ,c + offset)

loop(w,branch) = branch, + branch, + ...+ branch,,

Figure 3: The DSL for branch transformation programs

For example, after the users provide examples for the first three
records shown in Figure[T|b), the transformation program is shown
in Figure The program has a function (classify(value)) to recog-
nize the format of input (value). Based on the input format, it uses
the conditional statement switch to invoke the corresponding branch
transformation program to transform the input. Here, format refers
to the format of the first and second records where a double quota-
tion separates the first degree information from the rest of the string.
The format, corresponds to the format of the third record where a
blank space separates the first degree from the rest.

The syntax of the branch transformation program is a concate-
nation of several segment programs as shown in Figure [3] where
it returns a string concatenating the outputs of all its segment pro-
grams (segment;). This language allows the users to perform simple
string deletion, insertion and reordering. For simplicity, the branch
program in Figure [J] only contains one segment program. A seg-
ment program can be specified in three ways: (1) a constant string

(const), (2) extracting substring from the input between two posi-
tions (substr;) or (3) a loop statement (loop(w, branch)). The substr
program also has an offset with a default value 0, which is omitted
by default. This parameter is described later with the loop statement.
The two position programs (ps and p,) in the substr program specify
the start and end positions in the input to extract the substring. A
position program identifies a location in the input. The position
programs can be specified using (1) an absolute position, or (2)
restricted regular expressions that identify the context of the given
position, which can be represented using a triple as (leftcxt, rightcxt,
occ). The “leftcxt” describes the left context of the position and
“rightext” describes the right context. The “occ” refers the occ-th
appearance of the position with the specified context. The contexts
are all specified using token sequences.

Our approach tokenizes texts into token sequences. The different
types of token are defined below. START represents the beginning
of the raw value. END is for the end of the raw value. UWRD
represents an uppercase letter, LWRD means a sequence of lower
letters, the BNK means a blank space, NUM refers to a sequence
of digits and WORD refers to a sequence of alphabetical letters,
etc. Each punctuation is a token, such as Dquot refers to a double
quotation. Therefore, (NUM,*””, 1) means the first occurrence of a
position whose left is a number and whose right is a double quotation
mark. Our language also supports loop statements, which returns
a concatenated results of w branch programs. The i —th branch
program’s offset value is i. By having the offset values from 1 to
w, the loop statement can repeatedly extract substrings of the same
pattern.

In order to generate the transformation program, IPBE [21} 20,
22| first creates traces [9]] for the given examples. A trace essentially
specifies the input-output pairs for all transformation steps of each
particular example when transforming the raw data into the target
data. For example, one trace for the first example in Figure [T(b)
is [substring = “10”(pos| = 1, posy = 3)]. The trace specifies a
way to transform the input into the target output. It dictates that
the program should contain one segment program and its output
should be a string “10". It also specifies that the substring should be
extracted between position 1 and 3. Thus, the first position program
(posy) should output 1 and the second (pos;) should return 3. With
the traces of examples, the IPBE generalizes over these specific
traces to derive programs.

When the user provides a new example, IPBE tries the refine the
previous program to generate a new program that is consistent with
all given examples. If such program does not exist, the approach
partitions the examples into multiple clusters using constrainted
agglomerative clustering [20]. Each cluster contains the examples
of the same format. IPBE learns a multi-class SVM classifier [2]]
to recognize these different formats. To learn the classifier, the
approach first converts the records into features vectors. The features
can be categorized into two types: (1) counts of tokens and (2) the
average indexes of tokens in the sequence. As shown in Figure]
the string “6 x 8 is convert into a sequence of tokens. Each token
has its type and content. The feature vector contains the counts for
different tokens, such as the 2 under NUM means there are two NUM
tokens. It also contains the average positions of these tokens. For
example, first NUM has an index of 1 in the token sequence and the
second NUM’s index is 5. Thus, the average position (NUM_pos) is
3 here.

After learning the SVM classifier, IPBE uses this classifier as
the classify function in the switch statement shown in Figure|2|to
choose the branch program that should be invoked to transform an
input. It learns the branch transformation program for each cluster
of examples. Finally, it combines the conditional statement with the

Text 6x8”
Token sequence NUM(6) BNK LWRD(x) BNK NUM(8) Dquot(“)
NUM |BNK | NUM_pos |BNK_pos
Feature vector
2 2 3 3

Figure 4: The token sequence and feature vector for a string

Examples you entered:

10" Hx 8" W 10 x|

"14.75"Hx 14.75" W x 1.5" D 1475 x|

H: 58 x W: 25" 58 x|
30 x 46|

a-

Recommended Examples:

30 x 46" 30 x 46 -
11" H x 6" diameter 11 v
Sampled Records:

12"Hx9"W 12

10"Hx8"W 10

Figure 5: User interface

branch programs to create final transformation program.

3. VERIFYING THE TRANSFORMED DATA

To verify the correctness of the transformed data, our approach
samples records from the entire dataset. The approach then automat-
ically identifies the potentially incorrect records and recommends
these identified records for the users to examine. When the recom-
mendations are shown to users, they can provide the expected values
for the incorrect records or they can confirm a record is transformed
correctly. Our approach uses the records that the users have edited
or confirmed as new examples to refine the recommendations.

The user interface of our system is shown in Figure 5] The
interface consists of three areas:

e cxamples you entered: this area shows all the examples pro-
vided by the user. There are also buttons with cross icons
used for deleting previous examples

e recommended examples: this area shows all the potentially
incorrect records for users to examine. If the user finds an
incorrect record, she can click the record and enter the target
output in the popup window as in Figure[5] She can also
click the button with a check icon to confirm that the record
is correct

e sampled records: this area shows all the records in the sample.

The records in the GUI are color-coded. The transformed result
is a concatenation of the substrings either extracted from the inputs
or inserted as constant strings. The substrings that are extracted
from inputs are colored in the same color in both the input and the
transformed result. As shown in the Figure EL the “10” is colored
blue in both the input and output of the last record to indicate the
correspondences between the input and output. By providing the
color-coding, the users can have an insight of the learned programs.

They can also notice the potentially irregular color pattern to identify
the incorrect records.

4. SAMPLING RECORDS

Our approach uses hypothesis testing to decide whether the num-
ber of incorrect records in the entire dataset is below a certain
percentage. The hypothesis is the percentage of incorrect records is
smaller than pj,..r. The alternative hypothesis is the percentage of
incorrect records is not less than pypper. The pjgyer represents that
the percentage of incorrect records that we want to achieve in the
dataset. The pypper refers to a percentage of incorrect records that
we want to avoid (Pupper = Plower)-

We use the binomial distribution B(n, p) to model the distribution
of incorrect records, as each record is either transformed correctly
or incorrectly. The parameter » is the number of sampled records.
The parameter p is the probability that a record is incorrect, which
can also be interpreted as a p fraction of records are transformed
incorrectly. To find the sample size for testing the hypothesis, we use
the binomial cumulative distribution function as shown in Formula[T]
[3]. Pr(x < Z;n, p) represents the probability of the number of
incorrect records (X) is less than Z, in the binomial distribution
B(n, p). Weuse 1| —a and 1 — 3 to adjust our confidence level
and power for the hypothesis test: (1) a controls the probability of
rejecting our hypothesis when it is true and (2) 1 — 8 controls the
probability of rejecting the alternative hypothesis when it is false.
Typically, the confidence level 1 — « is set to 0.95 and the power
1 — B is set to 0.80 in practice [3]. The z¢ is the allowable number
of incorrect records. If the incorrect number of records x is smaller
than z, our hypothesis passes the test with confidence ¢ and power
1 — B over the alternative hypothesis. Given o, 8, n, Pupper and
PDlower» We can calculate z¢ based on Formulal[T]

Since the user ideally stops when there is no incorrect record in
the sample, the x is zero and it is strictly smaller than z¢.

Pr(x < Za;n,pupper) >1-B,
where Pr(x < 2o, Plower) <

&)

Demanding a lower error percentage, a higher confidence and
power of the hypothesis often requires a larger sample. For example,
when pjgyer = 0.01, o0 < 0.05, the alternative hypothesis is pypper >
0.02 and 1 — 3 > 0.8, we need a sample of 910 records. Meanwhile,
if we change the pjgyer = 0.001 and pypper > 0.002, the minimal
sample size is 9635. However, we can configure the parameters to
achieve the balance between sample size and level of confidence to
meet different user requirements.

5. RECOMMENDING RECORDS

Our approach automatically examines the records in the sample to
identify potentially incorrect records (line[2]to line[]in Algorithm/[T).
It then sorts these records and recommends one for the users to
examine.

Our approach has two phases. First, it identifies the records
(Ryyntime) With runtime errors. Runtime errors here are the errors that
occur during the execution of transformation programs and cause
the programs to exit abnormally. Second, our approach identifies the
questionable records (R yestionable) With potential incorrect results
when there is no record with runtime errors.

5.1 Finding the records with runtime errors

Our approach finds the records with runtime errors. These records
cause the learned program to exit abnormally in execution. There
are mainly two types of runtime errors: (1) the position program

Algorithm 1: Algorithm for recommending records

Input: Set of all the records R, transformation program P and
MetaClassifier F

Output: Recommended set of Records R*

Ryuntime = [, uneszionahle =[LR"=1]

Rg=sample(R)

for record r in R; do

[

2 r; = applyTransformation(r, P)
3 if r; contains runtime error then
4 rs.score = number of failed position programs
5 Rrumimeﬂdd(rt)
else
6 score = F.getScore(r;)
7 if score < 0 then
8 r¢.Score = score
9 unesliunable .add(r)
end
end
end
if Ryuntime ~iSEmP[y() then
10 sort Ryyestionable acscendingly based on record score
1 R = unestionable
else
12 sort Ryyuntime acscendingly based on record score
13 R* = Ryuntime
end
return R*

cannot locate a position and (2) the segment program has a start
position larger than the end position.

For example, the approach applies the learned program shown in
Figure[2]to a new input “H: 24 x W: 7 " to extract the first degree
information. The program uses the first branch program to transform
this record. The start position program cannot locate a position in
the input and output “-1”, as “24" does not appear at the beginning
of the input. The end position program cannot locate a position
either, as there is no “"” after “24”. The corresponding segment
program also has a runtime error too, as both its position and end
position are smaller than O (-1). The other case of runtime error is
that the segment program has a start position bigger than the end
position. In this case, the two position programs of the segment
program both successfully locate two indexes in the input. However,
the end position is before the start position, which only causes a
runtime error of the segment program.

To identify the records with runtime errors, our approach simply
applies the learned program to the sampled records, collects all the
records with runtime errors and puts them into the set Ryysime-

5.2 Building a meta-classifier for detecting ques-
tionable records
The set of binary classifiers used for building the meta-classifier
can be categorized into 3 types: (1) classifiers based on the dis-
tance (fy;sr) (2) classifiers based on the agreement of different pro-
grams (fprogram) and (3) classifiers based on the format ambiguity

(fambiguity)-

5.2.1 Classifiers based on distance
This type of classifier calculates the distances from records to a set
of records. Based on the distribution of the distances, it identifies the
records with distances that are larger than certain standard deviations

from the chosen references. To calculate the distance between two
records, the approach first converts the records to feature vectors
and then calculates the Euclidean distance between the two vectors.
The features used here are the same as the ones introduced in the
previous section.

This type of classifier (fzis (ei| 7, 2, ¢)) is shown in Function It
classifies each record ¢; as either a correct record (1) or an incorrect
record (-1) based on its distance (d,, ;) from the reference (r). N is
the number of records. Each classifier of this type can be charac-
terized using a triple (r,z,c). r represents the reference. It has two
values: “all records” or “examples”. The string “all records” spec-
ifies that the approach calculates the distance between the feature
vector of the record (e;) with the mean vector of all records except
¢;. The string “examples” means that the approach computes the
distance from the record (e;) to the mean vector of the examples.
The ¢ has three values: “input”, “output” or “combined”. “input
and “output” here mean that only inputs or outputs of the records
are used to create feature vectors. “combined” means the input
and output are concatenated into one string to create the feature
vector. The o is the distance standard deviation. The co indicates
the number (c) of standard deviations. For example, a classifier
Fais (eil “examples” | “input” | 1.8) identifies the records whose in-
puts are more than 1.8 standard deviations (o) away from the mean
vector of the inputs of examples .

e

-1 dey>co
1 der<co 2)

%Zi(de,ur - ,u')27 u= %Zide,‘,r

Since parameter triple (r,7,c¢) has many configurations, our ap-
proach generates all configurations. Here, the value for c is selected
a set of predefined decimal numbers. The approach uses each con-
figuration to create a binary classifier and adds the classifier into the
library of classifiers.

Jaisi(eilrt, ¢) = {

where o =

5.2.2 Classifiers based on the agreement of programs

This type of classifier identifies the records that consistent pro-
grams disagree about the transformation results. Typically, our
approach can generate multiple programs that are consistent with
given examples. Each program can be considered as an interpreta-
tion of the examples. The classifiers of this type maintain a set of
programs that are consistent with the examples. The binary clas-
sifier identifies the records (output -1) that the programs produce
different results for the same input. Providing examples for these
records can help to clarify a user’s intention and guide the system to
converge to the correct programs. However, to build such classifiers,
directly generating all the consistent programs and evaluating all
these programs on records is expensive, as there are usually a large
number of consistent programs given a few examples.

To reduce the computational cost in building this type of classifier,
we exploit the fact the approach can independently generate the po-
sition programs. Our approach generates all the consistent position
programs instead of the whole branch programs and evaluates these
position programs on the records. This modification greatly reduces
the number of programs that our approach is required to generate
and evaluate, as the set of complete programs can be considered
as a Cartesian product of sets of position programs. For example,
in Figure [6} the start and end position of the substring “10” can
both be represented using a set of programs. Every start position
program can combine with any end position program to form a
segment program. There would be 16 segment programs if there are
4 start position programs and 4 end position programs. But the total
number of start and end position programs is only 8. Our approach

Start position program: End position program:

1. (START, NUM, 1) 1. (NUM, “, 1)
2. (START, NUM, -1) 2. (START NUM, , -1)
3. (ANY, NUM, 1) 3.(10,7,1)

4. (START 107, ™, -1)

107 x 8

4. (ANY, NUM, -1)

Input:

Output: 10

Figure 6: Candidate position programs for one segment program

only needs to generate and evaluate 8 position programs instead of
16 segment programs.

5.2.3 Classifiers based on the format ambiguity

This type of classifier aims to capture those records that are poten-
tially labeled with the wrong format. The transformation program
contains a conditional statement, which is used to recognize the
format for a record before applying any transformation. Currently,
we use a SVM multi-class classifier as the conditional statement as
described in the previous work section. The SVM classifier not only
classifies the records to their formats but also outputs the probabil-
ity of the record belonging to that format. To identify the records
that are potentially labeled incorrectly by the SVM classifier, our
approach selects the records with the probability below a threshold
6. To select the right 6, our approach first creates a classifier us-
ing each 0 in a predefined set and adds it into the classifier library.
Later, our approach selects the classifier with the 8 having the best
performance described in the next section.

Combining classifiers using ADABOOST: we use ADABOOST [5]]

to combine classifiers above to create a meta-classifier (F(e)) for
classifying whether a record (e) is transformed correctly as shown
in Function 3] The meta-classifier outputs -1 for incorrect records
and 1 for correct records. The output is 1, if the weighted sum of
the output of a set of binary classifiers (f;) is no less than 0; -1 if
the sum is negative. During training ADABOOST iteratively selects
the binary classifier (f;) from a pool of classifiers described above
to minimize the error on the misclassified training instances. It also
assigns weights (w;) to these classifiers indicating their importance
in the final meta-classifier.

F(e) = sign(y wifi(e)) 3)

Our approach only uses ADABOOST to select the binary clas-
sifiers and learn their weights once to create the meta-classifier.
Our approach uses this meta-classifier for all future transformations.
Notably, the meta-classifier only defines the binary classifiers to
be used and the weights for them. The approach still learns the
binary classifiers constituting the meta-classifier for each specific
transformation. Our approach learns the parameters for the binary
classifiers (f;) from the examples, records and consistent programs
that are unique to each iteration. It combines these learned binary
classifiers with the assigned weights to create the meta-classifier.
The approach can use the meta-classifier with the learned binary
classifiers to identify incorrect records.

5.2.4 Sorting the recommended records

As the approach recommends multiple records, it places the
records that are more likely to be incorrect and contain more valu-
able information on the top of the recommendation area shown in
Figure[5] This saves users’ time in examining the recommended
records and the system can also obtain more informative examples
from the users. Our approach calculates a score for each record to
measure how likely a record is incorrect and how much information
it can provide in synthesizing the program.

The records with runtime errors are all incorrect. The score for
these records is the number of failed subprograms including segment
and position programs. A higher score means the approach can learn
more information from this record, if the user provides an example
for this record. The approach sorts these records in a descending
order.

As to the records without runtime errors, we assume that the
records that are more likely to be incorrect can provide more in-
formation for the system. The approach uses —Y;w; * f;(x) in
Function [3] as the score for each record. A higher score indicates
more classifiers or the classifiers with heavier weights consider the
record as an incorrect record. The approach sorts these records in
descending order.

5.3 Minimal test set

We want to ensure that a user labels a minimum number of records,
users are recommended to validate at least one record in a minimal
set of records by either confirming the correctness of the record
or entering a new example for that record. As mentioned before,
there are multiple consistent programs given a set of examples.
These programs conflict with each other as they generate different
results on certain records. The minimal test set contains the records
that these consistent programs disagree on the outputs. Ideally,
we should ask users to verify the outputs of all the programs to
identify the correct programs. However, fully generating all the
programs and executing them on records is infeasible in practice
based on two reasons: (1) the users are waiting for the responses
on the fly and (2) the infinite number of conditional statements
as there can be an infinite number of decision hyperplanes in the
feature vector space. Our approach only generates all the consistent
position programs and evaluates them on the records to approximate
all the programs that should be tested. To identify the minimal test
set, our approach simply uses the same set of records that are labeled
as incorrect by the classifier based on the agreement of programs.
Our approach highlights these records with blue borders in the GUI
as seen in Figure[5] When the minimal test set is empty, there are
not conflicting position programs.

6. EVALUATION

To evaluate the performance of our approach, we performed
simulated experiments and a user study to compare our system with
alternative approaches. Transforming a dataset usually requires
several iterations in the evaluation. An iteration starts when the user
provides an new example and ends when the system has learned the
transformation program and applied the program to the rest of the
data records.

6.1 Simulated experiment

There are two goals of this experiment: (1) test whether our
recommendation can capture the incorrect records, and (2) test
whether our approach can place at least one incorrect record on top
so that users can easily notice these incorrect records.

6.1.1 Dataset

We used the 30 scenarios published in our previous work [21].
Each scenario contains about 350 records. The data was gathered
from student mashup projects in a graduate-level course, which
required the students to integrate data from multiple sources to
create various applications. They were required to perform a variety
of transformations to convert the data into the target formats. Each
scenarios contains two columns of data. The first column shows the
raw data and the second column shows the transformed data.

6.1.2 Experiment setup

To collect the training data for learning the meta-classifier, we
should have both the transformation results and the labels to indicate
whether these records are correct or not. Our approach first chose
a record, provided the expected output and used it as an example.
It learned the transformation program and applied the program to
the rest of records. It compared the transformed data with the
expected output and labeled each record as correct or incorrect. It
also calculated the confidence of the conditional statement on each
record. After collecting the data for the iteration, it started a new
iteration by identifying the first incorrect record and providing an
example for that record. The process ended when all the records
were transformed correctly. Our approach collected training data
from all iterations of the 30 scenarios. We divided all the scenarios
into 5 groups and ran 5-fold cross-validation. Our approach trained
the meta-classifiers using 4 groups of training data and tested the
meta-classifier on the remaining group.

We used two metrics below to evaluate our approach and alterna-
tive approaches in each scenario:

e iteration accuracy: the percentage of iterations that our rec-
ommendations contain at least one incorrect record out of all
the iterations having incorrect records.

e mean reciprocal rank (MRR): the average of the reciprocal
rank of the first identified incorrect record. Q is the total num-
ber of iterations and Rank; is the index of the first incorrect
record in the recommended list in the i-th iteration. If the
recommendation fails to include the incorrect record and there
exists one, the ﬁnki is set to 0.

MRR = 1 i !
Q0 | Rank;

We compared our current approach E]with the state-of-the-art ap-
proach (Approach-f) [20] and a baseline approach. The Approach-
B also provides recommendations for users to examine. There are
two main differences between our approach and approach-f. First,
our approach learns a meta-classifier from a pool of classifiers, while
Approach-f only uses one classifier that is just one of the classifiers
in our pool. Second, our approach recommends multiple records
for users to review, while Approach-f only recommends one record.
The baseline approach does not provide recommendation, which
is also used by many existing applications. The baseline only ran-
domly shuffles the transformed records for users to examine and
users directly examine these shuffled records.

6.1.3 Results

As shown in Figure |/ our approach accurately captured the
incorrect records in the recommendation. The average of iteration
accuracy of our approach in all scenarios is 0.98 compared to 0.83
of the Approach-f. The iteration accuracy is left blank for baseline

I"The documentation and code of our system are available on Github
(https://github.com/areshand/Web-Karma)

Iteration accuracy comparision
®Our

Approach-B

Iterations accuracy

23 24 25

Scenarios

MRR comparision
®Our

& Approach-p

Baseline

1

0.4

111 FERRLIL !

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Scenarios

a
° g

- -
=

-

:

©

Figure 7: Comparison results

as the baseline approach does not provide any recommendations.
The improvement is mainly due to two reasons. First, our approach
recommended multiple records compared to that Approach-f only
recommended one record in every iteration. Second, our meta-
classifier is an ensemble of a library of classifiers. The classifier used
in Approach-f is just one in the library. This ensemble of classifiers
enables our approach to capture a boarder range of incorrect records.
Only scenario 9 and 18 have iterations in which our approach failed
to detect the incorrect records. These iterations require examples for
unseen input formats that are similar to previous examples, which
make the system fail to detect the difference. One example of the
scenario 9 is shown in Table[I] The users intended to extract the
full prices for student tuitions (1st and 2nd record). Since the third
record only has the credit price, it should be transformed to “NULL".
However, given only the first and second record as examples, our
approach did not know the user required a different transformation
for the third record, as it shared a very similar format with two
previous records. Thus, our approach did not recommend the 3rd
record as a potentially incorrect record for users to examine.

Our approach can place the incorrect records on top of the recom-
mendation, as the average MRR of our approach in all scenarios is
0.75. It saved users’ time from fully exploring a long list of records.
The average MRR of Approach-f in all scenarios is 0.68. It did not
place the incorrect record on top for most of iterations without run-
time errors. The MRR of the baseline approach was calculated based
on the index of the first incorrect record in the transformed records.
We can see both our approach and Approach-f3 are well above the
baseline, as the randomized shuffling can place the incorrect records
in the middle of the list.

6.2 User study

We performed a user study to evaluate our approach in real use

Raw Transformed
$33,926 per year (full-time) $33,926
$42,296 per program (full-time) $42,296
$1,286 per credit (full-time) $1,286

Table 1: One typical example of a failed iteration

cases. The goal of this experiment is to test whether the users using
our approach can achieve better correctnesses than the users of
Approach-f with no more user effort.

6.2.1 Dataset

We collected 5 scenarios with about 4000 records for each sce-
nario on average to evaluate the approaches. The first 2 records and
the description of the scenarios are shown in Table[2]to demonstrate
the transformation. These transformations involve transforming text
into URIs by adding prefixes, replacing blank spaces with under-
scores or reordering substrings such as s1, s2 and s5. The rest of
scenarios focus on extracting substrings from the inputs such as s3
and s4.

6.2.2 Experiment setup

We used three metrics to measure the user performance (1) cor-
rectness, which is the percentage of correct records when the users
stopped transforming, (2) iteration time, which is the average time
(in seconds) used by users in one iteration and (3) total time, which
is the averaged total time (in seconds) used by users to transform a
dataset.

We recruited 10 graduate students and divided them into two
groups: groupy and groupp. We asked users in group, to use our
system and asked users in groupp to use the Approach-f3. We first
asked them to work on one sample scenario to learn how to use the
two systems. We then described the goal on the other 5 scenarios
and asked them to transform the scenarios into the target formats.

We used the training data gathered in the simulated experiment
to train our meta-classifier for recommending records. The pjyyer
and pypper were set to 0.01 and 0.04. Our approach sampled 300
records in every iteration.

6.2.3 Results

The results of the user study are shown in Table[3} Our approach
achieved a correctness higher than 0.99 in all scenarios. These cor-
rectnesses were within the user expected correctness range. Com-
pared with Approach-f, we can see our approach also achieved
better correctnesses in all 5 scenarios. Users in group, not only had
higher correctness rates, but also used less time per iteration for 4
out of 5 scenarios and used the same amount of time on the first
scenario. We performed paired one-tail t test for the hypothesis that
our approach uses less time per iteration and has higher correct-
ness than Approach-f3. The result shows that the improvements are
statistically significant (p < 0.05).

In the user study, we found that users using our approach used
less total time in 3 out of 5 scenarios. This was due to users using
our approach were willing to perform more iterations. We found that
the users in group, provided more examples than users in groupp,
as users in group, can simply click a button to confirm a correct
record as a new example. The users confirmed several examples
(2 - 5 examples) before stopping transformation. Thus, the number
of examples (Example#) provided by the users in group, is higher
than the numbers in groupp as shown in Table[3] The group, users
provided 11.1 examples and users in groupp only provided 8.4
examples on average. Providing more examples gives users more

Scenario description Input Output
. WidthIN http://qudt.org/vocab/unit#Inch
s1 change into URI HeightCM http://qudt.org/vocab/unit#Centimeter
. Dawson, William William_Dawson
s2 change into URI Lauren Kalman Lauren_Kalman
. Thor I#172 (January, 1970) January, 1970
s3 extract issue date Nachine Man 1152 NULL
7 x9in. 7
s4 | extract first degree 6 13/16 X 8 7/8 in. 613716
. American thesauri/nationality/American
85 change into URI South African thesauri/nationality/South_African
Table 2: Scenarios used in user study
Scenario Our approach Approach-f3
Correctness | Iteration Time | Total Time | Example# | Correctness | Iteration Time | Total Time | Example#
sl 1 16 182.4 11.4 0.828 16 144 9
s2 0.998 17 227.8 134 0.994 26 234 9
s3 0.992 16 185.6 11.6 0.873 36 313.2 8.7
s4 0.997 14 196 14 0.983 17 187 11
s5 0.999 12 64.8 5.4 0.872 22 94.6 4.3
Average 0.997 15 171.32 11.1 0.91 23 194.56 8.4

Table 3: User study results

chances to refine the recommendation and examine more records,
which in turn leads to a higher correctness rate. Moreover, the users
in group, also used less time. We found when the recommendation
contained incorrect records on top, it largely reduced the time users
used to examine the results compared to the time spent by users
to directly examine the results when the recommendation failed to
capture the incorrect records.

In the user evaluation, we observed that our approach recom-
mended a large number of records for users to examine for cer-
tain iterations. For most of the iterations, the recommendations
had the incorrect records on top of the recommended list and the
users identified these incorrect records. For the remaining itera-
tions, users missed certain incorrect records in the recommendation.
But the users still obtained correctnesses of final results satisfying
the requirement specified in the experiment setup (p;,,,=0.01 and
Pupper = 0.04), as the numbers of unidentified incorrect records
were smaller than the allowable number Z, (7).

We also asked users for their feedbacks on the color-coding of
the results. All users said the color-coding helps them to identify
incorrect records by noticing some irregular color patterns. Some
users also mentioned that it would be more helpful if different
formats can also be colored differently

7. RELATED WORK

Recently, programming-by-example (PBE) approaches [11}|8} 6]
have proven to be effective in generating transformation programs
for simple scenarios without coding. Recently, FlashFill [6], which
is an example PBE system, is already integrated into Excel 2013
to help users transform the data. Here, we only review the closely
related work focusing on verifying the correctness of user-generated
programs [10]. The techniques used to verifying the correctness
of programs can generally be categorized into 3 types: (1) testing
the users generated programs following formal software testing
strategies, (2) detecting potentially incorrect results and asking users
to verify, and (3) visualizing the results to reveal irregularities and
outliers. Existing approaches usually combine techniques from

multiple categories to maximize the chance of detecting errors in
the generated programs.

As the users are often overconfident with the correctness of their
results, a program testing plan can be designed and users are pro-
vided with the feedback of how complete tests have been done. The
testing feedback may motivate the users to test the results more thor-
oughly. The WYSWYT (“What You See is What You Test”) [18,
16, |[17]] describes an approach for users to verify their spreadsheet
programs. To test the spreadsheet programs, the approach asks users
to provide test cases through validating the correctness of certain
values. To ensure it has obtained enough test cases, the approach
developed a criterion called definition-use coverage to find the val-
ues that users should validate. The criterion is essentially developed
based on the data flow adequacy [15] to test the correctness of cell
references in spreadsheets. Our approach is inspired by this ap-
proach to recommend users to examine a minimal set of records to
address the overconfidence problem. However, our approach only
focuses on transforming a column of data into another other column.
There are not cell dependences we can leverage in deciding which
records to examine. Moreover, recommended records can also help
users to explore the dataset to allow them to notice the unexpected
inputs to refine their programs, which is more related to help users
understand the task requirements rather than merely testing. The
approach [1] introduced assertions into the spreadsheet program
testing. It allows users to specify their expectation and converts
them into assertions. The assertions specify allowed cell values in
the form of Boolean expressions. Whenever a conflict between an
assertion and a cell value happens, the cell value is shown to the
users. Our approach is different from this approach as our approach
only asks user to provide examples.

Many approaches have been developed to identify the potentially
incorrect records. The approach [6] can highlight the entries, which
have two or more alternative transformed results. This method
generates multiple programs and evaluates these programs on all
the records to identify these records with different results. This
method is equivalent to one of the classifiers used in our approach to
identify incorrect records. Our approach supports more methods for

detecting potentially incorrect records and combines these different
methods using a meta-classifier. Moreover, our approach places all
identified records together in one area so that users do need to go
through all the records to find them. LAPIS [13]] highlights the texts
that have potentially incorrect matches. Their approach identifies the
matches that are different from the majority of matches. Wolfman,
et al. [19] extends the approach [11] by reducing the user effort
using a mixed initiative approach combining several interaction
modes. Wu, et al. [22] recommends only one example for users
to examine and the recommendation is only based on the distance
from the records to the examples. Compared to approaches above,
our approach learns more powerful rules that can identify incorrect
records in various scenarios. Our approach recommends and sorts
multiple records so that the users have a chance of catching the
incorrect records without examining many records.

Different visualization methods have been proposed to help users
gain insight into both the data and learned program. OpenRefine [7|]
supports a large number of ways to visualize the data and it also
allows users to customize the way of visualizing the data, such as
histogram, facet graphs and etc. Users may notice some irregular
pattern when watching these visualizations to uncover potentially
incorrect results. Data Wrangler [§]] translates transformation pro-
grams into natural language so that end-users can read these pro-
grams. They can then verify whether the programs are the same as
expected. Our approach is orthogonal to the approaches above. Our
approach color-codes the substrings in the records so that users can
understand how the raw inputs are transformed into the outputs.

8. CONCLUSION AND FUTURE WORK

PBE approaches should enable users to obtain the correct results
on large datasets. We present an approach designed to help users of
PBE approaches to obtain correct results with minimal efforts. The
approach samples a set of records for automatic inspections. It then
uses an ensemble of classifiers to identify the potential incorrect
records from the sampled records and presents these potentially
incorrect records for the users to examine. User can provide labels
for these records by either entering examples for incorrect records or
confirming a record is correct. The approach learns from these labels
to update the recommendation. We performed a simulated experi-
ment on collected scenarios. The results shows that our approach
can identify incorrect records in nearly all the iterations and can
also place the incorrect records on top so that users can easily notice
these incorrect records. We also performed a user study. Its results
show that our approach can save users time in obtaining significantly
higher correctnesses compared to alternative approaches.

In the future, we plan to introduce some existing orthogonal
methods for verifying the correctness of results and programs. For
example, we can use histogram to visualize both the raw data and
transformed data to allow users to obtain better overview of the
data. Translating the transformation programs to readable natural
language texts can also help users to gain insight into the generated
programs. Thus, they can verify whether the programs work in a
way as they expect.

9. REFERENCES

[1] Margaret M. Burnett, Curtis R. Cook, Omkar Pendse, Gregg
Rothermel, Jay Summet, and Chris S. Wallace. 2003.
End-User Software Engineering with Assertions in the
Spreadsheet Paradigm. In ICSE.

[2] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A
library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (2011). Software available
athttp://www.csie.ntu.edu.tw/~cjlin/libsvm.

[3] M.M. Desu and D. Raghavarao (Eds.). 1990. Sample size

methodology. Academic press Inc.

[4] Ronen Feldman and James Sanger. 2006. Text Mining

Handbook: Advanced Approaches in Analyzing Unstructured

Data. Cambridge University Press, New York, NY, USA.

Yoav Freund, Robert E Schapire, and others. 1996.

Experiments with a new boosting algorithm. In /ICML, Vol. 96.

148-156.

[6] Sumit Gulwani. 2011. Automating String Processing in

Spreadsheets Using Input-output Examples. In POPL.

David F Huynh and Mazzocchi Stefano. OpenRefine

http://openrefine.org. http://openrefine.org

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and

Jeffrey Heer. 2011. Wrangler: interactive visual specification

of data transformation scripts. In CHI.

Emanuel Kitzelmann and Ute Schmid. 2006. Inductive

Synthesis of Functional Programs: An Explanation Based

Generalization Approach. Journal of Machine Learning

Research (2006).

[10] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan
Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi,
Joseph Lawrance, Henry Lieberman, Brad Myers, Mary Beth
Rosson, Gregg Rothermel, Mary Shaw, and Susan
Wiedenbeck. 2011. The State of the Art in End-user Software
Engineering. ACM Comput. Surv. (2011).

[11] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and
Daniel S. Weld. 2003. Programming by Demonstration Using
Version Space Algebra. Mach. Learn. (2003), 46.

[12] Henry Lieberman (Ed.). 2001. Your Wish is My Command:
Programming by Example. Morgan Kaufmann Publishers Inc.

[13] Robert C. Miller and Brad A. Myers. 2001. Outlier Finding:
Focusing User Attention on Possible Errors. In UIST.

[14] Raymond R. Panko. 1998. What We Know About Spreadsheet
Errors. J. End User Comput. (1998).

[15] Sandra Rapps and Elaine J. Weyuker. 1985. Selecting
Software Test Data Using Data Flow Information. [EEE Trans.
Software Eng. (1985).

[16] Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher
Dupuis, and Andrei Sheretov. 2001. A Methodology for
Testing Spreadsheets. ACM Trans. Softw. Eng. Methodol.
(2001).

[17] Gregg Rothermel, Lixin Li, Christopher DuPuis, and Margaret
Burnett. 1997. What You See is What You Test: A Methodology
for Testing Form-based Visual Programs. Technical Report.

[18] Karen J. Rothermel, Curtis R. Cook, Margaret M. Burnett,
Justin Schonfeld, T. R. G. Green, and Gregg Rothermel. 2000.
WYSIWYT Testing in the Spreadsheet Paradigm: An
Empirical Evaluation. In /CSE.

[19] Steven A. Wolfman, Tessa A. Lau, Pedro Domingos, and
Daniel S. Weld. 2001. Mixed initiative interfaces for learning
tasks: SMARTedit talks back. In IUI.

[20] Bo Wu and Craig A. Knoblock. 2014. Iteratively Learning
Conditional Statements in Transforming Data by Example. In
Proceedings of the First Workshop on Data Integration and
Application at the 2014 IEEE International Conference on
Data Mining. IEEE.

[21] Bo Wu and Craig A. Knoblock. 2015. An Iterative Approach
to Synthesize Data Transformation Programs. In IJCAI.

[22] Bo Wu, Pedro Szekely, and Craig A. Knoblock. 2014.
Minimizing User Effort in Transforming Data by Example. In
1UL

(5

—

[7

—

[8

—

9

—

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://openrefine.org

	Introduction
	Programming by example
	Verifying the transformed data
	Sampling records
	Recommending records
	Finding the records with runtime errors
	Building a meta-classifier for detecting questionable records
	Classifiers based on distance
	Classifiers based on the agreement of programs
	Classifiers based on the format ambiguity
	Sorting the recommended records

	Minimal test set

	Evaluation
	Simulated experiment
	Dataset
	Experiment setup
	Results

	User study
	Dataset
	Experiment setup
	Results

	Related work
	Conclusion and Future Work
	References

