An Iterative Approach to Synthesize Data Transformation Programs*

Bo Wu
Computer Science Department
University of Southern California
Los Angeles, California
bowu@isi.edu

Abstract

Programming-by-Example approaches allow users
to transform data by simply entering the target data.
However, current methods do not scale well to
complicated examples, where there are many ex-
amples or the examples are long. In this paper, we
present an approach that exploits the fact that users
iteratively provide examples. It reuses the previ-
ous subprograms to improve the efficiency in gen-
erating new programs. We evaluated the approach
with a variety of transformation scenarios. The re-
sults show that the approach significantly reduces
the time used to generate the transformation pro-
grams, especially in complicated scenarios.

1 Introduction

The development of programming-by-example approaches
(PBE) allows users to perform data transformation without
coding [Lieberman, 2001]. The user can directly enter the
data in the target format and the system learns from these
input-output examples to generate a transformation program
that is consistent with the examples.

Examples often have many interpretations. Users gener-
ally provide multiple examples in an iterative way to clarify
their intentions. For example, in Table 1, a user wants to
extract the year, maker, model, location, and price from car
sale posts. The left column shows the titles of the car sale
posts and the right shows the target values. The user can di-
rectly enter the target data (2000 Ford Expedition los angeles
$4900) for the first entry as an example. The system syn-
thesizes a program and applies the program to the rest of the
data. The user checks the transformed results and provides
examples for any incorrect results to refine the program until
she determines the results are correct.

PBE systems typically generate an entirely new program
as users provide new examples. Their time complexity is ex-
ponential in the number and a high polynomial in the length
of examples [Raza et al., 2014]. This prevents these PBE sys-
tems from being applied to real-world scenarios that require
many or long examples to clarify a user’s intention.

*This research is based upon work supported in part by the Na-
tional Science Foundation under Grant No. 1117913.

Craig A. Knoblock
Information Science Institute
University of Southern California

Los Angeles, California
knoblock@isi.edu

We observe that the programs generated from previous ex-
amples are usually close to the correct ones. A large portion
of the programs remain the same as a user provides additional
examples to refine the program. Reusing the correct subpro-
grams can greatly reduce the computational costs.

We present an approach to adapt programs with additional
examples. To adapt the program, first, the approach needs
to identify the incorrect subprograms. Since a transforma-
tion program often has multiple subprograms, it is essential
to correctly identify the incorrect subprograms to avoid miss-
ing them or redundantly generating the correct subprograms.
Second, the approach needs to be able to generate correct sub-
programs to replace the incorrect ones.

To address the above challenges, we have two insights.
First, we noticed that PBE approaches typically generate
traces. Traces are the computational steps executed by a pro-
gram to yield an output from a particular input [Kitzelmann
and Schmid, 2006]. A trace defines how the output string
is constructed from a specific set of substrings from the in-
put string. The PBE approaches then generalize over these
traces to produce the programs that are consistent with all
examples [Summers, 1977; Kitzelmann and Schmid, 2006;
Gulwani, 2011; Lau et al., 2003; Harris and Gulwani, 2011;
Singh and Gulwani, 2012b; 2012a]. As these traces encode
the required input and output pairs for each subprogram, they
can be leveraged to detect the buggy subprograms. Second,
the correctness of a program generated by PBE is only deter-
mined by whether it can output the correct results specified
by the traces. Thus, if a program can return the expected re-
sults on the examples, the program is considered to be correct
even though the program may fail on future unseen examples.

Our approach can deterministically identify incorrect sub-
programs and adapt them to additional examples. When the
user provides a new example, our approach applies the pre-
viously learned program on this new example. It records the
outputs of all the subprograms and compares them against the
expected outputs shown in the trace of the example. As the
number of incorrect subprograms can be different from the
number of outputs in the trace, our approach precisely maps
subprograms to their corresponding expected outputs to iden-
tify the incorrect subprograms, whose execution results differ
from the expected ones. As the transformation program has
subprograms, our approach searches for the incorrect subpro-
grams until no more incorrect subprograms is available. The

Table 1: Data transformation scenario

Input Data

Target Data

2000 Ford Expedition 11k runs great los angeles $4900 (los angeles)

2000 Ford Expedition los angeles $4900

1998 Honda Civic 12k miles s. Auto. - $3800 (Arcadia)

1998 Honda Civic Arcadia $3800

2008 Mitsubishi Galant ES $7500 (Sylmar CA) pic

2008 Mitsubishi Galant Sylmar CA $7500

approach then generates new correct subprograms to replace
incorrect subprograms. The new subprograms are consistent
with both previous and new examples.
To sum up, our approach makes the following contribu-
tions:
e iteratively generating programs from examples,
e deterministically identifying incorrect subprograms and
refining them,
e cnabling the PBE approach to scale to much more com-
plicated examples.

2 Previous Work

Our approach builds on the state-of-the-art PBE system de-
scribed in [Gulwani, 2011]. His approach defines a Domain-
Specific Language (DSL). This language supports a re-
stricted, but expressive form of regular expressions, which
includes conditionals and loops. The approach synthesizes
transformation programs from this language using examples.

To generate a transformation program, Gulwani’s approach
follows these steps: First, it creates all traces of the examples.
It segments the outputs into all possible combinations. From
the original input, it then generates these segments, indepen-
dently of each other, by either copying substrings from orig-
inal values or inserting constant strings. One trace example
in Figure 1 shows that the target value is decomposed into 2
segments (solid brackets). These 2 segments are copied from
the original input. A transformation program is composed of
a set of subprograms that produce the segments and the cor-
responding positions in the input string. A trace shows the
expected outputs of each of these subprograms. For example,
one segment program will output “2000 Ford Expedition ”
and its start position program will output ‘0’ and the end po-
sition program will output ‘20’ etc. Another trace from the
example split the output into 3 segments and copies “los an-
geles” from a different place (dashed bracket). It succinctly
stores all these traces using a directed acyclic graph where
nodes correspond to the positions and edges correspond to
the segments.

Second, it derives hypothesis spaces from the traces. A hy-
pothesis space defines the set of possible programs that can
transform the input to the output. A program defines the loca-
tions of the strings in the input using either constant positions,
constant tokens, or token types. For example, the hypothesis
space used to describe the first segment “2000 Ford Expedi-
tion ” has two alternatives to describe the program (1) as a
constant string or (2) using start and end positions. The start
position can be described as an absolute value (‘0’) or using
the context of the position. For instance, the left context of the
start position can be described as the beginning of the input
and the right context of the start position is “2000” or a num-

Original: 2000 Ford Expedition 11k runs great |os angeles $4900 (los angeles)
I—'—l

Y- - - -
Rt
Ny
P ke

2000 Ford Expedition os angeles $4900

Target:

Figure 1: Segmentations of the first example

Transform(val)
pos,=val.indexOf(START, NUM, 1)
pos,=val.indexOf(BNK, NUM, 1)
pos;=val.indexOf(BNK, LWRD, 3)
pos,=val.indexOf(NUM, BNK, 2)
output = val.substr(pos,, pos,) + val.substr(poss, pos,)
return output

(a) Program learned from the first example

P

(START, NUM, 1) } | (BNK, NUM, 1 | |(BNK, LWRD, 3)i(NUM, BNK, 2) |

(START, NUM, 1) |} (BNK, NUM, 1 | ’(’(',WORD,‘I (L\\‘RD,’)‘,1)| (ANY, BNK'$', 1(NUM, BNK, 2) |

P3 | START, NUM, 1) ! (BNK, ANY, 3)

’(’(‘,WORD,l (WORD,)", 1)| (ANY, BNK'$', 1(NUM, BNK, 2) I

(b) Programs refined by adding the second and third row

Figure 2: Program changes as more examples are added

ber type. When there are multiple examples, the approach
merges the hypothesis spaces from each example to find the
common hypothesis space for all examples. For example, the
right context of the first record for the start position is “2000”
and the right context of the second record for the same posi-
tion is “1998”. Thus, the right context that is common for the
two examples is a number type rather than a specific number.
Finally, it generates the programs from the hypothesis
space based on their simplicity. The approach always gen-
erates simpler programs first based on the partial order de-
fined on the transformation language. For example, it gen-
erates the program with fewer segments earlier. If a single
branch transformation program cannot cover all the exam-
ples, the algorithm partitions the examples and generates a
partition transformation program for each partition individu-
ally. A conditional expression can be learned to distinguish
these partitions. This approach also supports loop expressions
by detecting whether contiguous segments can be merged.
Figure 2(a) shows the program learned using the first
record as an example. The program is basically a concatena-
tion of several segment programs. A segment program aims
to generate a substring such as “val.substr(posy, poss)” or a
constant string. The two parameters (posi, poss) refer to the

start and end position programs of the substring in the original
value. Each position program as pos;=val.indexOf(START,
NUM, 1) consists of three components (left context, right con-
text, occurrence). The left and right contexts specify the sur-
rounding tokens of the target location. An occurrence (n)
refers to the n-th appearance of a position with the context.
A token is a sequence of characters. The approach uses the
following tokens: NUM ([0-9]+), LWRD([a-z]+), UWRD([A-Z]),
WORD([a-zA-Z]+), BNK(whitespace), ANY (match any token) and
punctuation such as a comma, a hyphen, etc. The UWRD rep-
resents a single uppercase letter, LWRD represents a sequence
of lowercase letters, WORD represents a sequence of any let-
ters and NUM refers to a sequence of digits. START and END
tokens indicate the start and end positions of the input. Hence,
pose refers to the first occurrence of a position whose left is
a blank token and right context is a NUM.

The transformation program is refined as the user provides
new examples as shown in Figure 2(b). P1 is the synthesized
program from the first row of Table 1, P2 is the program
when the first two rows are used as examples and the P3 is the
returned program from the first three rows. The solid rectan-
gles represent segment programs and each segment program
has two position expressions in parentheses. The dashed rect-
angles show the position programs that stay the same as the
program changes. We can see that a large portion of the new
program does not change. From P1 to P2, 3 out 4 position
programs stay the same. From P2 to P3, 4 out of 6 are the
same as before.

3 Iteratively Learning Programs by Example

Our approach adapts programs with new examples by iden-
tifying incorrect subprograms and replacing them with re-
fined programs. We first introduce some notations. Let P =
[p1,D2, ..., pn] Tepresent the transformation program. Every
p; = const|(p;,ps) corresponds to a segment program. It
can be either a constant string or extracting substring from the
input. p; and p{ are the start and end position programs. A
position program identifies a position with certain context in
the input. Py, ;) refers to a subsequence of programs between

index kand I (1 < k <1 < n). Let T = [ty tpy, .o tp.]
represent the output of the program P on the new example.
The ¢, is the execution result of the corresponding subpro-
grams p;. The ¢, and ¢, are the corresponding execution
results of p? and p§. Let T = [t1, 12, ..., t,] represent the
trace created from the new example. ¢; is a segment trace,
which defines how a substring in the output is produced from
the input. If the substring is copied from input value, ¢{ and
t$ refer to the start and end positions of the segment in the
input. Let H = {H; = [h11], H2 = [h21, haa]...} represent
the hypothesis space used to generate programs of different
numbers of segments. H; represents the space that has 7 seg-
ments. For example, H» defines the set of possible programs
that create the output string using two segments. A segment
hypothesis space contains all possible programs for generat-
ing a segment. We use h;; to represent all the jth segment
programs in the programs with ¢ segments. H;j,. ;) represents
the subsequence of segment spaces between index r and ¢ of
H;. Similarly, hj; and hf; correspond to the start and end

Trace

input: 2008 Mitsubishi Galant|ES|$7500](Sylmar CA) pic
output: [2008 Mitsubishi Galant/Sylmar CA/$7500 |
A/\

0 23 B 3
1 W Il H
0 1 33 -1
Execution Result: NUII Null _.$7500
[START, NUM, 1) (BNK, NUM, 1)] [¢(, wORD, 1) (LWRD,), 1) | [(ANY,BNK'S’, 1) (NUM, BNK, 2) |

Old Program:

Figure 3: P and T have same number of segments

position spaces of h;; containing start and end position pro-
grams.

To adapt the transformation program on the new example,
our approach creates traces from the new example. It then
iterates over these traces and utilizes these traces to gener-
ate a list of patches. Each patch contains 3 elements: (1) a
subsequence of incorrect programs, (2) their expected traces
and (3) their corresponding hypothesis spaces. The approach
then uses these traces in the patch to update the correspond-
ing hypothesis spaces and generates correct subprograms to
replace the incorrect subprograms. The approach stops when
it either successfully generates a transformation program that
is consistent with all examples or it exhausts all the traces.

To refine a program using a trace with m segments, the ap-
proach selects the hypothesis space H,,, from H, which con-
tains all the candidate programs with m segments. Depending
on the number of segments (n) in the current program (P), it
handles two cases separately: (1) n = m and (2) n # m.

3.1 P and T have the same number of segments

The number of the execution results of the segment programs
is the same as the number of segment traces. The approach
directly compares the ¢,, with the ¢; (line 3). If any execu-
tion result differs from the trace, there is an incorrect segment
program. The algorithm adds this program (p;) with the cor-
responding trace (¢;) and hypothesis space (h,,;) for further
refinement.

For example, Figure 3 shows a program learned using the
first two records in Table 1. The new example is the third
record. In the figure, we represent each segment program us-
ing a rectangle with its start and end position programs in the
parentheses. The “Null” in the execution results represents
that the segment program cannot generate an output. The “-1”
means the program cannot find a position matching the pat-
tern specified in the position program. The first segment pro-
gram in Figure 3 cannot generate the correct substring (2008
Mitsubishi Galant) as specified in the trace. The algorithm
adds the program, its trace and corresponding segment hy-
pothesis space into the patches for refinement (line 4). As the
third segment program’s output is correct, it doesn’t need to
be refined.

3.2 P and 7T have a different number of segments

Since the number of segment programs is different from the
number of segment traces, the algorithm cannot directly map
the segment programs to the segment traces with the same
indices. However, it can find the mapping between segment

3.2 3|9 Alll 4.8
input: [1998 Honda Civic |130 k miles -$3800](Arcadial

Trace 4
1 1

Output: 1998 Honda Civic|Arcadia $3800

Hypothesis Spaces: Hs

Execution Result:|2000 Ford Expedition ||os angeles 54900‘

old Program: |(START,NUM, 1) (BNK, NUM, 1) | ‘(BNK, LWRD, 2) (NUM, BNK, -1) |
Start =24 End =39

Figure 4: P and T have different number of segments

programs and segment hypothesis spaces. Meanwhile, the
segment hypothesis spaces are mapped to segment traces with
the same indices. The algorithm can then align the segment
traces and segment programs since they are mapped to the
same sequence of segment hypothesis spaces.

The algorithm maps subsequences of segment programs to
subsequences of segment hypothesis spaces (line 5). To iden-
tify the mapping, it first obtains the output (Op,, ,) by eval-
uating the subsequence of programs (F; x)) on old examples
(O). Tt then identifies the hypothesis space (H,,[; ;1). The
part of old examples with the output Op, , ., used to derived
H., 4,5 should contain the same string as Op(y,;. Thus, the
space (H,,[; ;1) contains sequences of subprograms that can
generate the same output as P, ;) but these sequences of sub-
programs can represent different segmentations.

Figure 4 shows the outputs of two segment programs. The
po generates “los angeles $4900”. Hj contains a different
segmentation where the last two segment hypothesis spaces
(h32 and h33) are derived from the traces with output “los an-
geles ” and “$4900” separately. Thus, the second segment
program is mapped to the second and third segment hypothe-
sis spaces in Hs. The algorithm can then identify the aligned
segment traces using the same indices as the segment hy-
pothesis spaces. It then compares whether the subprograms
can generate the results as specified in the traces or whether
the lengths of the two sequences match to decide whether it
should add this sequence of programs for further adaptation
(line 7).

The algorithm can further map the position programs with
the traces. When a sequence of segment programs are
mapped to a sequence of segment traces, the approach com-
pares the output of the first start and the last end position pro-
grams with the first start and the last end position traces to ex-
clude the correct subprograms that can generate the expected
results (line 8 and 9). For example, the last segment program
in Figure 4 is mapped to two segment traces. The end posi-
tion of the third segment trace is 39, which is the same as the
output of p§ on the new example (39). Thus, the current end
position program is correct and can be reused. In the case that
P and T have the same number of segments, there is only one
segment in 7]; ;) and Py ;1. The start position program of the
first segment (2) outputs “0”, which is the same as the start
position in the trace(¢7) in Figure 3. Therefore, the algorithm
excludes this position program from adaptation.

3.3 Adapting Incorrect Programs

As the algorithm has identified the patches consisting of in-
correct subprograms, the expected traces and the correspond-
ing hypothesis spaces, it first uses the traces to update these
spaces. The algorithm first creates a basic hypothesis space
using the traces and merges this space with the identified hy-
pothesis spaces to generate the updated spaces using the same
method described in the previous work section. It then gener-
ates the correct subprograms from the updated spaces that is
consistent with expected traces. Finally, it replaces the incor-
rect subprograms with correct subprograms and returns the
new program (line 10).

Algorithm 1: Program Adaptation

Input: P program, H hypothesis space, 1" trace of the
new example, O old examples

Output: P,

n = size(P), m = size(T), patches = []

H,,, = findHypothesisSpaceByLength(/{, m)

2 if n = m then

for i =/1, m]do

3 if ¢; # t,, then

4 | patches.add (([pi], [ti], [hmi]))

end
end

-

else

s seqmap= {([k,[] : [i, j]) | OP[k-,L] € OHm[i,j]}

6 for { [k 1]: [i, j] } in segqmap do

7 if (j—i)# (1 —k) VI, # Tp, , then

‘ patches.add((P[k,l], T[i,j]» Hm[i,j]))

end

end

end

or (P[k,l]7 T[i,j] R Hm[i,j]) in patches do

8 ift; = t;i then modify patch to remove pj,

-y

9 if ¢ = t,¢ then modify patch to remove py
end

10 P,e = apply(patches, P)
return P,,.,,

3.4 Soundness and Completeness

Our approach can always adapt the transformation program
using the new example to generate a correct program, if there
exists a correct transformation program.

Proof 1 The approach is sound as it only returns the program
that is consistent with examples. To prove the completeness,
suppose AP* consistent with O U N. O refers to the previous
examples and N is the new example. This implies Jtrace*
trace* is the trace of the correct program (P*) on the new ex-
ample (N). First, the algorithm can identify all incorrect
subprograms w as it only excludes the correct subprograms
that generate expected outputs specified by trace*. Second,
the identified space H; contains the correct subprograms.
As the w is consistent with O, to replace w, the correct sub-
programs (r) should also generate the same output as w on

previous examples O. As the recovered space H; contains all
the alternative programs that can generate the same outputs
as w, the space contains r. Lastly, as the approach uses a
brute force search in the space to identify the correct subpro-
grams r as described in [Gulwani, 2011], it can identify the
correct subprograms r. Therefore, the algorithm can gener-
ate P* by replacing w with r.

3.5 Performance Optimizations

There can be multiple traces for one input-output pair. To
more efficiently adapt the programs, our approach filters
traces and then sorts the remaining traces to reuse most of
the previous subprograms.

The trace (T") should always have at least the number of
segments as the number of segments in the program (P). Be-
cause the approach generates simpler programs with fewer
segments first from all the programs that are consistent with
examples, all the programs with fewer segments have been
tested and failed to transform the examples correctly. There-
fore, the approach only uses the traces with a larger or equal
number of segments to refine the program.

We aim to make the fewest changes to the program to make
it consistent with the new example. The approach sorts the
traces in descending order based on their resemblance to the
T'. The approach iterates over the traces in the sorted list to
adapt the program. To sort the traces, the approach creates
a set s that contains the outputs of the position expressions.
It then creates a set s, that contains all the positions in the
trace. The approach then sorts the traces based on the score
(size(s1Ns2)+1)/(size(s2)+1) . The high score indicates
a large overlap between s; and s,. It in turn means a close
resemblance between the program and the trace.

4 Evaluation

We implemented our iterative programming-by-example ap-
proach (IPBE) as part of Karma [Knoblock and Szekely,
20151" . We conducted an evaluation on both real-world and
synthetic datasets.

4.1 Dataset

Our real-world data consists of two parts. First, we collected
the 17 scenarios from [Lin et al., 2014] (referred to as D1).
Each scenario contains 5 records. We also gathered 30 sce-
narios used in [Wu and Knoblock, 2014] (referred to as D2).
The average number of records in each scenario is about 350.

Second, we created a synthetic dataset by combining mul-
tiple scenarios. The synthetic scenarios are to transform
records with multiple fields at the same time. We show three
example input and output records in Table 2. They have 7
columns in the output records. To transform one record from
the input to the output, the approach learns a sequence of
transformations, such as extract the first name, extract the
last name, etc., and combines them in one transformation pro-
gram. By changing the number of columns (1- 10) in the out-

'Data and code are available at http://bit.ly/IGtZ4Gc. The
code is also available as the data transformation tool of Karma
(http://www.isi.edu/integration/karma).

put records, we can control the complexity of the scenario.
Each scenario has about 100 records.

Table 2: Synthetic scenario for generating the first 7 columns

Name Year Dimension

Cook Peter 1905 - 1998. (T.V) 22 x 16 1/8 x 5 1/4 inches
input Clancy Tom 1858 - 1937 5/8 x 40 x 21 3/8 inches

Hicks Dan 1743 - 1812 6 15/16 x 5 1/16 x 8 inches

First Last Birth Death Ist 2nd 3rd

Cook Peter 1905 1998 22 16 1/8 51/4
output Clancy Tom 1858 1937 5/8 40 213/8

Hicks Dan 1743 1812 6 15/16 51716 8

4.2 Experiment Setup

We performed the experiments on a laptop with 8G RAM
and 2.66GHz CPU. We compared IPBE with two other ap-
proaches: (1) Gulwani’s approach [Gulwani, 2011] and (2)
Metagolpr [Lin et al., 2014]. We used our own implemen-
tation of Gulwani’s approach rather than Flashfill in Excel
2013, as a large portion of scenarios in the test data cannot
be transformed by Flashfill, and there is no easy way to in-
strument Excel to accurately measure the program generation
time. For Metagolpr, we obtained the code from the au-
thors and ran the code on our machine to obtain the results
on D1. We compared the three methods in terms of the time
(in seconds) to generate a program that is consistent with the
examples.

4.3 Real-World Scenario Results

The results on real world scenarios are shown in Table 3. We
calculated the average program generation time (in seconds)
for each scenario. To calculate the time for IPBE and Gul-
wani’s approach, we recorded the program generation time
for all the iterations until all the records were transformed
correctly. We then averaged the program generation time
across all iterations and refer to this average time as the gen-
eration time. For Metagolpr, we used the experiment set-
ting in [Lin et al., 2014] and averaged the program generation
time for the same scenario.

The Min is the shortest time among the set of generation
time for all scenarios. The Max, Avg and Median are also
calculated for the same set generation time. A 0 in the results
means the time is smaller than one millisecond. As we cannot
easily change Metagolpr to run it on D2, we only ran our
approach and Gulwani’s approach on D2.

We can see that IPBE outperforms the other two ap-
proaches as shown in Table 3. Comparing IPBE with Gul-
wani’s approach, we can see that reusing previous subpro-
grams can improve the system efficiency. Metagolpp treats
each character as a token, which enables it to do transfor-
mation on the character level. However, it also significantly
increases the search space, which causes the system to spend
more time to induce the programs.

4.4 Synthetic Scenarios Results

To study how Gulwani’s approach and IPBE scale on com-
plex scenarios, we created 10 synthetic scenarios with the
number of columns in the output ranging from 1 to 10. We
gradually increased the number of columns so that the ap-
proaches had to learn more complicated programs. We ran

Table 3: Results of real-world scenarios

Min Max | Avg | Median

IPBE 0 51 0.34 0

D1 | Gulwani’s approach 0 8 | 0.59 0
Metagol 0| 21393 | 55.1 0.14
IPBE 0 1.28 | 0.20 0

D2 | Gulwani’s approach 0 17.95 | 4.02 0.33
Metagol ~ ~ ~ ~

===Gulwani's Approach

=|PBE

Program generation time (seconds)

1 2 3 4 5 6 7 8 9 10
Number of Columns

Figure 5: Synthesizing time rises as column number increases

the two approaches and provided examples until they learned
the programs that can transform all records correctly and then
measured the average time used to generate a program.

The time in Figure 5 used by the two approaches increases
as the number of columns increased. However, IPBE scales
much better compared to Gulwani’s approach when more
columns are added. The time saving comes from the fact that
IPBE can identify the correct subprograms and only refine the
incorrect subprograms. The cost of generating a new program
is related to the portion of the program that requires updating
rather than the actual size of the program. A program with
more subprograms can usually reuse more subprograms so
that the time saving will be more evident.

5 Related Work

PBE approaches have been extensively studied for the past
decades. Early work [Kushmerick, 1997] [Hsu and Dung,
1998] [Muslea et al., 1999] in wrapper induction learns ex-
traction rules from user labels to extract target fields from
documents. [Lau er al., 2003] proposed an approach to de-
rive text-editing programs from a sequence of user edit oper-
ations. However, these approaches typically require separate
labels for each field or labels for each step.

The pioneering work in program induction [Summers,
1977] can induce Lisp programs with one recursive func-
tion from the traces of input-output pairs. [Kitzelmann
and Schmid, 2006] extended this approach to induce a set
of recursive equations with more than one recursive call.
Recently, researchers developed approaches to induce pro-
grams for data transformation [Gulwani, 2011; Harris and
Gulwani, 2011; Singh and Gulwani, 2012b; Raza et al., 2014;
Manshadi ef al., 2013]. These approaches introduce the Do-
main Specific Language (DSL) to support a set of predefined

transformations. They learn the hypothesis space based on
the DSL and then generate programs. However, these ap-
proaches do not utilize the correct subprograms generated
previously.

More recently, several approaches show that reusing the
previous subprograms is promising. [Perelman ez al., 2014]
focuses on developing an approach to synthesize programs
for various domains given the DSL. Their approach can reuse
previous subprograms. It maintains two sets: (1) one set
called contexts containing the programs with part of its sub-
programs deleted to create holes and (2) the other set con-
taining all the subprograms from previously generated pro-
grams. Through implanting the subprograms into the holes in
the contexts, it can create new programs. [Lin et al., 2014]
uses the meta-interpretive learning framework [Muggleton
and Lin, 2013] to learn domain specific bias. By reusing
the predicates generated from other tasks or previous itera-
tions, their approach can use fewer examples and generate
programs more efficiently. Our work is orthogonal to these
works. These works focus on maintaining a library of previ-
ous generated subprograms and reusing these programs when
encountering new examples. As the number of subprograms
in the library keeps increasing, searching in this library for
the right subprograms can require more time. Our approach
takes advantage of traces to deterministically identify, refine
incorrect subprograms and reuse correct subprograms.

For automatic program bug repair, [Shapiro, 1991] devel-
oped an approach to deterministically adapt programs with
new evidence using resolution tree backtracking. Recently,
approaches using generic programming to generate fairly
complicated software patches have been applied to automatic
bug fixes [Weimer et al., 2010; Goues et al., 2012]. These
approaches often require either an oracle to test whether cer-
tain parts of the program are correct or require a large number
of test cases to locate the problem. Our approach is different
from these approaches as it automatically creates the expected
outputs for the subprograms using the given examples.

6 Conclusion and Future Work

This paper presents a program adaptation approach for
programming-by-example systems. Our approach identifies
previous incorrect subprograms and replaces them with cor-
rect subprograms. The experiment results show that our ap-
proach significantly reduces the time to generate transforma-
tion programs and is more scalable on complicated scenar-
ios. It enables the PBE approach to induce programs in real
time, which greatly enhances the usability of such systems in
a broad range of scenarios.

In the future, we will improve the work in two aspects.
First, our approach relies on the traces that have the input-
output pairs for all the subprograms. We will extend our ap-
proach to domains where we can only obtain partial traces
that contain only input-output pairs for a subset of subpro-
grams. Second, having more informative examples in early
iterations can reduce the required number of examples. We
plan to develop an approach to help users provide more infor-
mative examples first.

References

[Goues er al., 2012] Claire Le Goues, ThanhVu Nguyen,
Stephanie Forrest, and Westley Weimer. Genprog: A
generic method for automatic software repair. IEEE Trans.
Software Eng, 2012.

[Gulwani, 2011] Sumit Gulwani. Automating string process-
ing in spreadsheets using input-output examples. In POPL,
2011.

[Harris and Gulwani, 2011] William R. Harris and Sumit
Gulwani. Spreadsheet table transformations from exam-
ples. In SIGPLAN, 2011.

[Hsu and Dung, 1998] Chun-Nan Hsu and Ming-Tzung
Dung. Generating finite-state transducers for semi-
structured data extraction from the web. Inf. Syst., 1998.

[Kitzelmann and Schmid, 2006] Emanuel Kitzelmann and
Ute Schmid. Inductive synthesis of functional programs:
An explanation based generalization approach. Journal of
Machine Learning Research, 2006.

[Knoblock and Szekely, 2015] Craig A. Knoblock and Pedro
Szekely. Exploiting semantics for big data integration. Al
Magazine, 2015.

[Kushmerick, 1997] Nicholas Kushmerick. Wrapper Induc-
tion for Information Extraction. PhD thesis, 1997.

[Lau et al., 2003] Tessa Lau, Steven A. Wolfman, Pedro
Domingos, and Daniel S. Weld. Programming by demon-
stration using version space algebra. Mach. Learn., 2003.

[Lieberman, 2001] Henry Lieberman, editor. Your Wish is
My Command: Programming by Example. Morgan Kauf-
mann Publishers Inc., 2001.

[Lin ef al., 2014] Dianhuan Lin, Eyal Dechter, Kevin Ellis,
Joshua Tenenbaum, and Stephen Muggleton. Bias refor-
mulation for one-shot function induction. In ECAI, 2014.

[Manshadi et al., 2013] Mehdi Hafezi Manshadi, Daniel
Gildea, and James F. Allen. Integrating programming by
example and natural language programming. In AAAI,
2013.

[Muggleton and Lin, 2013] Stephen Muggleton and Dian-
huan Lin. Meta-interpretive learning of higher-order
dyadic datalog: Predicate invention revisited. In IJCAI,
2013.

[Muslea er al., 1999] Ton Muslea, Steve Minton, and Craig
Knoblock. A hierarchical approach to wrapper induction.
In AGENTS, 1999.

[Perelman et al., 2014] Daniel Perelman, Sumit Gulwani,
Dan Grossman, and Peter Provost. Test-driven synthe-
sis. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2014.

[Raza et al., 2014] Mohammad Raza, Sumit Gulwani, and
Natasa Milic-Frayling. Programming by example using
least general generalizations. In AAAI 2014.

[Shapiro, 1991] Ehud Y. Shapiro. Inductive inference of the-

ories from facts. In Computational Logic - Essays in
Honor of Alan Robinson, 1991.

[Singh and Gulwani, 2012a] Rishabh Singh and Sumit Gul-
wani. Learning semantic string transformations from ex-
amples. Proc. VLDB Endow., 2012.

[Singh and Gulwani, 2012b] Rishabh Singh and Sumit Gul-
wani. Synthesizing number transformations from input-
output examples. In Proceedings of the 24th International
Conference on Computer Aided Verification, 2012.

[Summers, 1977] Phillip D. Summers. A methodology for
lisp program construction from examples. J. ACM, 1977.

[Weimer ef al., 2010] Westley Weimer, Stephanie Forrest,
Claire Le Goues, and ThanhVu Nguyen. Automatic pro-
gram repair with evolutionary computation. Commun.
ACM, 2010.

[Wu and Knoblock, 2014] Bo Wu and Craig A. Knoblock.
Iteratively learning conditional statements in transforming
data by example. In Proceedings of the First Workshop on
Data Integration and Application at the 2014 IEEE Inter-
national Conference on Data Mining. IEEE, 2014.

