
ITERATIVELY LEARNING DATA TRANSFORMATION PROGRAMS FROM

EXAMPLES

by

Bo Wu

A Dissertation Presented to the

FACULTY OF THE USC GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

December 2015

Copyright 2015 Bo Wu

Dedication

To my father Yongwei Wu and my mother Rufen Liu, for their love and support

ii

Acknowledgments

First and foremost, thanks to my parents. Their unconditional support allows me to

finish this long endeavor. Thanks to Chiao-Yu. Her love and company give me the

strength to get through all those hard times.

I would like to thank my advisor, Craig A. Knoblock, who taught me how to conduct

research. During my PhD study, I met many difficulties, such as identifying research

problems, writing papers, giving presentations and so on. I was deeply frustrated by my

research progress at the beginning. Craig’s encouragement allows me to continue my

research. Talking with Craig is always very helpful. Once I leave ISI, I think one of

things I would miss most is talking with Craig. Besides research, Craig also sets a good

example for me on many aspects of life, which I will try my best to simulate in future.

Many thanks to my committee members: Daniel O’Leary, Cyrus Shahabi, Yan Liu

and Jose Luis Ambite. Their guidance kept me on the right track so that I could success-

fully finish my thesis in time. Their patience and kindness allowed my thesis proposal

and defense to go smooth.

I want to thank Pedro Szekely. He led me into the user interface area and patiently

taught me how to develop a research prototype within a large team. These experiences

opened a new door for me and allowed me to pay more attention to the user part. I also

want to thank Yao-Yi Chiang from whom I learnt a lot of interesting work and tools in

iii

geospatial information integration. He showed me the interesting applications in that

field.

Finally, I want to express my thanks to my fellow students of information integra-

tion group at ISI: Mohsen, Jeon-Hyung, Suradej, Yoon-Sik, Jason and Hao. You are

always ready to help. Hanging out with you guys is fun, which makes this long PhD

journey more joyful. Talking with you also helps me to learn many interesting things

and appreciate the diversity of this world.

This research is based upon work supported in part by the National Science Founda-

tion under Grant No. 1117913. This research was also supported in part by the Intelli-

gence Advanced Research Projects Activity (IARPA) via Air Force Research Laboratory

(AFRL) contract number FA8650-10-C-7058.

The U.S. Government is authorized to reproduce and distribute reports for Gov-

ernmental purposes notwithstanding any copyright annotation thereon. The views and

conclusions contained herein are those of the author and should not be interpreted as nec-

essarily representing the official policies or endorsements, either expressed or implied,

of any of the above organizations or any person connected with them.

iv

Contents

Dedication ii

Acknowledgments iii

List of Tables viii

List of Figures ix

Abstract x

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Proposed approach . 3
1.3 Thesis Statement . 7
1.4 Contributions of the Research . 7
1.5 Outline of the Thesis . 8

2 Previous Work 9
2.1 Generating the transformation program 11

2.1.1 Synthesizing the branch transformation program 11
2.1.2 Learning the Conditional Statement 14

3 Learning Conditional Statements 16
3.1 Construct Conditional Transformations 18

3.1.1 Data Preprocessing . 20
3.1.2 Partition Algorithm . 21
3.1.3 Distance Metric Learning . 24
3.1.4 Learning the Classifier . 28

3.2 Evaluation . 30
3.2.1 Datasets . 30
3.2.2 Experiment Setup . 31
3.2.3 Metrics . 33
3.2.4 Experimental Results . 33

v

4 Adapting Branch Programs 41
4.1 Iteratively Learning Programs by Example 44

4.1.1 P and T have the same number of segments 46
4.1.2 P and T have a different number of segments 47
4.1.3 Adapting Incorrect Programs 49
4.1.4 Soundness and Completeness 50
4.1.5 Performance Optimizations 50

4.2 Evaluation . 51
4.2.1 Dataset . 51
4.2.2 Experiment Setup . 52
4.2.3 Real-World Scenario Results 53
4.2.4 Synthetic Scenarios Results 54

5 Maximizing Correctness with Minimal User Effort 56
5.1 Verifying the transformed data . 59
5.2 Sampling records . 60
5.3 Recommending records . 62

5.3.1 Finding the records with runtime errors 63
5.3.2 Building a meta-classifier for detecting questionable records . . 65

5.3.2.1 Classifiers based on distance 65
5.3.2.2 Classifiers based on the agreement of programs . . . 66
5.3.2.3 Classifiers based on the format ambiguity 67
5.3.2.4 Sorting the recommended records 69

5.3.3 Minimal test set . 69
5.4 Evaluation . 70

5.4.1 Simulated experiment . 71
5.4.1.1 Dataset . 71
5.4.1.2 Experiment setup 71
5.4.1.3 Results . 72

5.4.2 User study . 74
5.4.2.1 Dataset . 74
5.4.2.2 Experiment setup 75
5.4.2.3 Results . 76

6 Related Work 78
6.1 Data Transformation Approaches . 78

6.1.1 Specifying the transformation steps 78
6.1.2 Specifying the transformation results 79

6.2 PBE approaches for data transformation 80
6.2.1 Learning Conditional Statements 81
6.2.2 Adapting Program With New Examples 82
6.2.3 User interface . 83

vi

7 Conclusion 86
7.1 Limitations and future work . 87

7.1.1 Managing the user expectation 88
7.1.2 Incorporating external functions 88
7.1.3 Handling user errors . 89

Bibliography 90

A Appendix 94

vii

List of Tables

3.1 Data profile . 31
3.2 Success rates for different approaches on all scenarios 34
3.3 Classifier accuracy . 37
3.4 The partitions of example of NPIC . 39

4.1 Data transformation scenario . 42
4.2 Synthetic scenario for generating the first 7 columns 52
4.3 Results of read-world scenarios . 53

5.1 One typical example of a failed iteration 74
5.2 Scenarios used in user study . 75
5.3 User study results . 76

viii

List of Figures

1.1 An example for a data transformation scenario 2
1.2 Interaction between users and PBE systems 4
1.3 Approach overview . 5

2.1 An example transformation program 10
2.2 One trace example of an input-output pair 12
2.3 An example of the hypothesis space 13

3.1 Token Sequence and Feature Vector for a String 22
3.2 Weights of Different Features Change Over Iterations 27
3.3 The examples and the unlabeled data in each partition 29
3.4 Comparing DPICED with 3 other groups of approaches: (G1) DPICED

vs DPIC vs DP, (G2) DPICED vs SPIC vs SP and (G3) DPICED vs
NPIC and NP . 34

3.5 DPIC used fewer seconds per iteration compared to SPIC and NPIC . . 36
3.6 Time per iteration increases as example number grows 38
3.7 The number of conditional branches in the final program generated by

different approaches . 39

4.1 Program changes as more examples are added 43
4.2 P and T have the same number of segments 46
4.3 P and T have different number of segments 47
4.4 Synthesizing time rises as column number increases 54

5.1 Different rules for recognizing incorrect records 57
5.2 User interface . 61
5.3 An example transformation program 64
5.4 Candidate position programs for one segment program 67
5.5 Comparison results . 73

ix

Abstract

Data transformation is an essential preprocessing step in most data analysis applica-

tions. It often requires users to write many trivial and task-dependent programs, which

is time consuming and requires the users to have certain programming skills. Recently,

programming-by-example (PBE) approaches enable users to generate data transforma-

tion programs without coding. The user provides the PBE approaches with examples

(input-output pairs). These approaches then synthesize the programs that are consistent

with the given examples.

However, real-world datasets often contain thousands of records with various for-

mats. To correctly transform these datasets, existing PBE approaches typically require

users to provide multiple examples to generate the correct transformation programs.

These approaches’ time complexity grows exponentially with the number of examples

and in a high polynomial degree with the length of the examples. Users have to wait

a long time to see any response from the systems when they work on moderately com-

plicated datasets. Moreover, existing PBE approaches also lack the support for users to

verify the correctness of the transformed results so that they can determine whether they

should stop providing more examples.

To address the challenges of existing approaches, we propose an approach that gen-

erates programs iteratively, which exploits the fact that users often provide multiple

examples iteratively to refine programs learned from previous iterations. By collecting

x

and accumulating key information across iterations, our approach can efficiently gener-

ate the new transformation programs by avoiding redundant computing. Our approach

can also recommend potentially incorrect records for users to examine, which can save

users effort in verifying the correctness of the transformation results.

To validate the approach in this thesis, we evaluated IPBE, the implementation of our

iterative programming-by-example approach, against several state-of-the-art alternatives

on various transformation scenarios. The results show that users of our approach used

less time and achieved higher correctnesses compared to other alternative approaches.

xi

Chapter 1

Introduction

This chapter introduces the key challenges of applying PBE approaches to perform data

transformation. I first motivate and define the problem. I then briefly describe our

approach to the problem and summarize our contributions. Finally, I present the outline

of the thesis.

1.1 Motivation and problem statement

Data transformation converts the data from the source format to the target format,

which is an essential step before utilizing the data. As the transformation is often task-

dependent, the data practitioner usually writes scripts for different tasks, which can be

error-prone and labor intensive.

Recently, programming-by-example (PBE) approaches [Lau et al., 2003; Huynh

et al., 2008; Kandel et al., 2011; Gulwani, 2011] have proven to be effective in gener-

ating transformation programs for simple scenarios without coding. These approaches

are based on certain domain specific language (DSL) designed to express common data

transformation operations. They only require examples (input-output pairs). They can

then generate programs that are consistent with examples, which means these program

can generate expected outputs for the corresponding inputs specified in the examples.

FlashFill [Gulwani, 2011], which is an example PBE system, is already integrated into

Excel 2013 to help users transform the data. For example, the dimensions of artworks

in Figure 1.1 mix values for all degrees into one cell. The user wants to put each degree

1

in its own column. Taking width for instance, the target values are shown in the right

column in Figure 1.1. To transform the data, the user enters the target value (width)

“9.375” for the first entry. The system generates a program and applies that program to

the rest of the data. If the user finds any entry is transformed incorrectly, she provides

a new example for that entry to regenerate the program. For instance, as the 4th entry

has both the painting width and frame width, the program learned from the first exam-

ple fails to transform the input of this unseen format. The user inputs “19.5” to teach

the system that she only wants the frame width, which is shown after the vertical bar.

The system regenerate the program and applies it to the rest of entries. The user keeps

providing examples until she determines the results are correct.

Figure 1.1: An example for a data transformation scenario

However, there are 3 challenges that need to be addressed to make PBE approaches

more practical. First, a dataset can have various formats and the user is only willing

2

to provide a few examples, as seen in Figure 1.1. The approach should learn to recog-

nize these formats from few examples accurately and then perform the transformation

accordingly.

Second, the users need to see the results on the fly so that they can provide addi-

tional examples if necessary. The approach should generate the programs in real time.

However, the current approaches’ computational complexity grows exponentially in the

number of examples and a high degree polynomial in the size of each example [Raza

et al., 2014]. In previous work, users have to wait a long time, when they work on the

scenarios that require long or many examples.

Third, users are often overconfident with the correctness of the results especially

on large datasets [Ko et al., 2011]. There are usually thousands of entries being trans-

formed. It is hard for users to manually examine whether all the entries are transformed

correctly. Users also do not like to invest much time in examining the results.

Given the challenges presented by current PBE approaches, this thesis focus on solv-

ing the problem of how to efficiently generate correct transformation programs for

data with heterogeneous formats using minimal user effort.

1.2 Proposed approach

To address the problem, we exploit the fact that users interact with the PBE system

iteratively. The interaction between the user and a PBE system often contains multiple

iterations as shown in Figure 1.2. In each iteration, the user examines the records and

provides examples for the records with incorrect results. A record here consists of raw

input and the transformed result. After obtaining the examples from the user, the PBE

system synthesizes a transformation program and applies this program to transform all

records. The transformed records are presented to the user for examination. If the user

3

Figure 1.2: Interaction between users and PBE systems

identifies any record transformed incorrectly, she can provide a new example and start

a new iteration. For any non-trivial datasets, users often provide more than 3 examples

before finishing transforming. For example, in Figure 1.1, the user keeps providing new

examples for the entries with incorrect results to regenerate a transformation program

that is consistent with all given examples.

The intuition of our approach is to identify and collect certain key information from

previous iterations and utilize the information to benefit the current iteration. To under-

stand how the information from previous iterations can improve the performance of the

existing PBE system [Gulwani, 2011], I briefly describe the architecture of our iterative

programming-by-example approach (IPBE) shown in Figure 1.3 and its key modules.

These key modules are based on the previous approach [Gulwani, 2011], which will

be described in Chapter 2 in more detail. In our approach, a user is asked to provide

4

Figure 1.3: Approach overview

examples in the GUI. It first clusters the examples into multiple clusters, where each

cluster corresponds to a specific format. It learns a classifier (conditional statement) to

recognize these different formats. It then synthesizes a branch transformation program

for each cluster to handle the specific format. Finally, the PBE approach combines the

conditional statement with branch programs to generate the final data transformation

program.

The three key components are (1) clustering examples and learning conditional state-

ments (2) synthesizing branch programs and (3) a user interface for providing examples.

The approach that we used to improve these modules’ performance through utilizing

information from previous iterations are listed below.

5

Efficiently clustering examples and accurately learning the classifiers: Learning

conditional statements (classifiers) requires clustering the examples into compatible

clusters. A compatible cluster means there is at least one branch program that is consis-

tent with the examples in that cluster. To know whether a group of examples are compat-

ible, the previous approach [Gulwani (2011)] tries to generate programs for this group

of examples to see if there exists a consistent program. Thus, verifying the compatibil-

ity of examples in a cluster is computationally expensive. What is worse, the previous

approach needs to verify the compatibilities of a large number of clusters before identi-

fying the final clustering. We developed an approach that learns a distance metric from

cluster information of previous iterations. This distance metric will put the compatible

examples closer so that they can form a cluster while putting the incompatible examples

far away. Using the distance metric, our approach can put the compatible examples into

one cluster without verifying the compatibilities of a large number of clusters. The dis-

tance metric can also be used to incorporate unlabeled data (the records that are not used

as examples) as the training data for learning a classifier as the conditional statement.

By expanding the training data using the unlabeled data, we can learn a more accurate

classifier than by just relying on few examples.

Efficiently synthesizing the branch transformation program: Only a small portion

of the learned program changes after the user provides a new example to refine the pro-

gram. Our approach can identify the incorrect subprograms that require modification

after users provide new examples. Our approach decomposes the new example to gen-

erate the expected input-output pairs for subprograms. It then compares the execution

results of subprograms of the current program with the expected outputs to identify the

subprograms that cannot generate expected outputs. After identifying the incorrect sub-

programs and their expected outputs, our approach uses the new example to refine the

6

hypothesis space that are used to generate the incorrect subprogram. It generates the

correct subprograms from the refined hypothesis space. It then replaces the previous

incorrect subprograms with new ones to generate the new program.

Guiding users to obtain correct results with minimal user effort: To handle large

dataset, our approach allows users to focus on a small sample. When the records in the

small sample are all transformed correctly, the entire dataset can obtain a correctness sat-

isfying the user’s requirement. My approach also learns from past transformation results

to recommend the records that potentially have incorrect results. Users examine these

recommended records. They can enter examples for incorrectly transformed records or

confirm the correctness of certain recommended records to refine the recommendation.

The approach also requires users to examine a minimal set of the records to ensure that

the users are not too confident with their results to carefully check the results.

1.3 Thesis Statement

Through collecting and leveraging the information generated across iterations, our

programming-by-example approach can efficiently generate programs that can

correctly transform data with heterogeneous formats using minimal user input.

1.4 Contributions of the Research

The goal of this research is to develop a practical programming-by-example data trans-

formation system. To be specific, our research has the following contributions:

• efficiently learning accurate conditional statements by exploiting information

from previous iterations

7

• incrementally synthesizing branch transformation programs efficiently by adapt-

ing programs from the previous iteration

• maximizing the user correctness with minimal user effort on large datasets by

recommending potential incorrect records.

1.5 Outline of the Thesis

The rest of this proposal is organized as follows. Chapter 2 describes the previous

work and related basic concepts. Chapter 3 describes the approach to learn conditional

statements iteratively. Chapter 4 presents the approach that iteratively generates new

programs by reusing previous subprograms. Chapter 5 discusses the approach to help

users verify the correctness of the results with minimal effort on large datasets. Chapter

6 reviews all the related work. Finally, chapter 7 concludes this research and identifies

areas for future research.

8

Chapter 2

Previous Work

Our approach is built on the state-of-the-art PBE system [Gulwani, 2011], which

exploits the version space algebra like many other program induction approaches [Lau

et al., 2003]. It defines a domain specific transformation language (DSL), which sup-

ports a restricted, but expressive form of regular expressions that also includes condi-

tionals and loops. The approach synthesizes transformation programs from this lan-

guage using examples.

To better understand the structure of the generated transformation program, we use

a different representation of the transformation program from Gulwani’s original nota-

tions without changing its meaning. The transformation program learned from the exam-

ples in Figure 1.1 is shown in Figure 2.1.

The program recognizes the format of the input using the classify function as seen

in Figure 2.1. It then performs the conditional transformation using the switch func-

tion based on the recognized format. It has a branch transformation program for each

specific format. The branch program is essentially a concatenation of several segment

programs as branch = substr1+ substr2+ A segment program outputs a substring,

which is defined as substr = const|substr(ps, pe)|loop(w, branch). The segment

program can (1) be a constant string (const), (2) extract a substring (substr) between

two positions specified by position programs ps and pe respectively or (3) a loop pro-

gram (loop) that executes a branch program iteratively where w controls the start point

of the loop. The w is passed as an offset from the beginning into the position programs

in the loop body, which is shown in an example later. The position program locating

9

Figure 2.1: An example transformation program

a position in the input is defined as p = indexOf(leftcxt, rightcxt, c)|number. It

can be specified using (1) an absolute number (number), or (2) a position with the con-

text specified by (leftcxt, rightcxt, c). Both leftcxt and rightcxt are a sequence

of tokens, which specifies the left and right context of a position correspondingly. c

refers to the c-th occurrence of the position with the required context. The set of

tokens used in the approach is as follows. ‘ANY’ can represent any token. ‘WORD’

([a-zA-Z]+) represents a sequence of alphabetical letters. ‘UWRD’ ([A-Z]) stands for

a single upper case letter. ‘LWRD’ ([a-z]+) means a sequence of lowercase letters.

‘NUM’ ([0-9]+) represents a sequence of digits. ‘BNK’ is a blank space. Besides

these tokens, all punctuation are also tokens. For example, in Figure 2.1, pos1 is

specified as (BNK, NUM, -1). “-1” means the first appearance of a position with the

required context when scanning backwards from the end of the input. Hence, (BNK,

10

NUM, -1) refers to the first position whose left is a blank space and whose right is a

number, when scanning from the end of the input. An example for loop program is

loop(2, substr(indexOf(WORD, ANY, 2+i), indexOf(ANY, WORD, 2+i))+“, ”) i ∈

[0, 1, ...]. The body of the loop is a concatenation of two segment programs: (1) one is a

segment program where the position programs start matching at the (2+i)-th occurrence

and (2) a constant string “,”. The loop program essentially extracts all WORD tokens

except the first one and appends a comma after each word. Here w is 2. The w + i

becomes 2+ i, which specifies the position program should start locating positions from

the second occurrence and continue searching for the next occurrence with the desired

context until the position program fails to locate a position.

2.1 Generating the transformation program

Synthesizing the transformation program as seen in Figure 1.3 has two essential steps:

(1) clustering the examples into partitions to learn conditional statements and (2) syn-

thesizing the branch program for each partition. The partition is a hypothesis space of

branch transformation programs derived from the examples belonging to the partition.

2.1.1 Synthesizing the branch transformation program

To generate a branch transformation program, Gulwani’s [Gulwani, 2011] approach fol-

lows these steps:

First, it creates all traces of the examples. To create the traces, it segments the out-

puts into all possible ways. From the original input, it then generates these segments,

independently of each other, by either copying substrings from original values or insert-

ing constant strings. Two trace examples are shown in Figure 2.2. The outside rectangle

shows that the “9.375” can be directly extracted from the input. The other trace depicted

11

Figure 2.2: One trace example of an input-output pair

using three small rectangles shows that the output is a concatenation of three substrings

where the period is extracted from the first period in the input.

Definition 1 Traces: traces are the computational steps executed by a program to yield

an output from a particular input [Kitzelmann and Schmid, 2006]. A trace here defines

how the output string is constructed from a specific set of substrings from the input

string.

Second, it derives hypothesis spaces from the traces. A hypothesis space defines

the set of possible programs in the DSL that can transform the inputs to the outputs.

The hypothesis space is stored using a direct acyclic graph (DAG), where the nodes

in the DAG correspond to the position hypothesis spaces that contain the position pro-

grams. The edges correspond to the segment hypothesis spaces that contain the segment

programs. An example of the hypothesis space derived from the traces in Figure 2.2

is shown in Figure 2.3. There are four nodes corresponding to 4 position hypothesis

spaces, as the output in Figure 2.2 can be split into at most 3 different segments. S1

and S4 are the start and end positions. Each path from S1 to S4 is a concatenation of

multiple edges representing the programs consisting of different segments such as the

path (S1 → S2 → S3 → S4) dictates the program can consist of three segment pro-

grams. The second segment hypothesis space (S2 → S3) contains all segment programs

generated by filling the ps and pe in the substr(ps, pe) with any pair of position pro-

grams from S2 and S3 position hypothesis spaces respectively. The segment space also

12

Figure 2.3: An example of the hypothesis space

contains the constant text as “.” shown in Figure 2.3. There is no guarantee that all pro-

grams in the hypothesis space are consistent with examples. For example, (NUM,′ .′, 2)

from S2 and (′.′, NUM, 1) from S3 can not form a valid segment program. The output

of the start position program will be larger than the output of the end position program,

as the program from S2 locates the beginning of the second period whereas the program

from S3 identifies the end of the first period. Finally, if there are multiple examples,

the approach creates a hypothesis space for each example and merges these hypothesis

spaces to generate a common hypothesis space for all examples.

Finally, the programs in the hypothesis space are partially ordered based on their

simplicity which is measured using a set of pre-defined heuristics. The simpler programs

are generated first as they are more likely to be correct based on Occama’s principle. For

example, the approach generates the program with fewer segments earlier. As mentioned

earlier, since not all programs in the hypothesis space are consistent with examples, the

approach uses a generate-and-test approach. The approach keeps generating programs

in the order of their simplicity and returns the first program that is consistent with all

examples.

13

2.1.2 Learning the Conditional Statement

To cluster the examples, the approach initially treats each example as its own partition.

It then chooses two compatible partitions to merge each time. The process iterates until

no more compatible partitions are available. The two partitions p1, p2 are compatible

if there is at least one branch transformation program, which is consistent with all the

examples of the two partitions. The comp(p1, p2) = 1 if two partitions p1 and p2 are

compatible, otherwise, comp(p1, p2) = 0. With the definition of comp, the approach

uses a utility function called compatibility score to choose two partitions with the highest

score to merge in each round.

CS(p1, p2, P) = (CS1(p1, p2, P), CS2(p1, p2)) (2.1)

CS1 =
∑

pk∈P,k 6=1,k 6=2

z(p1, p2, pk) (2.2)

z(p1, p2, pk) =


1 if (comp(p1, pk) = comp(p2, pk)

= comp(Merge(p1, p2), pk))

0 Otherwise

(2.3)

CS2 =
Size(Merge(p1, p2))

Max(size(p1), size(p2))
(2.4)

The compatibility score consists of two parts: (1) the agreement score CS1, which

captures the compatibility of merged partitions with the rest of partitions and (2) a finer

score CS2 used to measure the relative size of the partition after the merge. The CS2 is

used only when there is a tie of CS1 scores. As shown in the equation above, the CS1 is

the summarization of the z(p1, p2, pk). z(p1, p2, pk) is 1 if both p1 and p2 are compatible

with pk, while the merged partition of p1 and p2 (Merge(p1, p2)) is also compatible with

14

pk. The CS2 score calculates the relative size of the programs after the merge, where the

size function measures the number of programs that can be generated from the partition.

To select two partitions, the approach is required to calculate O(n3) times whether

two partitions are compatible where n is the number of partitions. Verifying whether two

partitions are compatible is computationally expensive; it requires verifying whether

the merged partitions can generate a program that is consistent with examples. Each

partition is actually a hypothesis space derived from the examples. Merging two parti-

tions requires intersecting the two hypothesis spaces of the two partitions and verifying

whether there exists a branch program that is consistent with the examples from both

partitions through the generate-and-test strategy. It is especially computationally expen-

sive when the two partitions are incompatible, as it requires evaluating all the programs

in that intersected space.

The approach is essentially an agglomerative clustering method. It greedily selects

the most compatible partitions based on the compatibility score in Equation 2.1 and then

merges them together until no more compatible partitions are available.

15

Chapter 3

Learning Conditional Statements

Much real world data has multiple formats and a single branch program cannot trans-

form all these formats. Therefore, it is essential for a PBE system to generate transfor-

mation programs that are capable of handling conditional transformations. It requires

the system to learn conditional statements that can recognize these formats and then

apply the right transformation to the data of a specific format. As shown in Figure 1.1,

the transformation program should distinguish between the two types of formats: the

one with a bar separating two widths and the one without the bar.

In this chapter, we solve the problem of learning expressive conditional statements

efficiently with few user provided examples. As shown in Figure 1.3, to learn the con-

ditional statement using the given examples, the current state-of-the-art approach by

Gulwani, 2011 first (1) partitions the examples into several clusters where examples in

one cluster can be transformed by the same branch program and then (2) learns a classi-

fier to distinguish between these formats. The partitioning of the examples also depends

on the transformation language defined in each PBE system, whether several examples

can be put into the same cluster depends on whether the system can find a conversion

program in that language. For example, given the first four rows as examples in Figure

1.1, the partition algorithm generates two partitions: R1, R2 and R3 as one partition and

R4 as its own partition. With the partitions, we can then train a classifier. This classifier

can then be used to recognize the other inputs so that the approach can invoke the correct

conversion for those inputs.

16

However, learning a conditional statement for PBE systems brings a series of chal-

lenges. First, the users need to see the results on the fly. The systems only have limited

time to generate the conditional statement. However, PBE approaches must identify one

partitioning among the many possible ways of clustering the examples such that every

partition generated by this partitioning can produce a program that is consistent with

all its examples. Moreover, it is computationally expensive to verify whether certain

examples can form a partition that can produce a consistent program.

Second, there are many ways to classify examples. Naively, the approach can treat

each example as one partition and learn a conditional statement to differentiate these

partitions. However, the approach aims to identify an concise interpretation that is con-

sistent with most of the records, as the Occam’s principle states the simplest interpre-

tation tends to be correct [Gulwani, 2011]. Therefore, the approach should cluster the

examples into the fewest partitions.

Third, users generally provide few input-output examples. The conditional state-

ments trained based on the few examples usually have poor prediction accuracy, as the

training data may not fully represent the rest of the records.

To address the challenges mentioned above, we exploit the fact that the users usu-

ally iteratively interact with the system. Users provide the examples in an iterative way.

Every time the user provides a new example, it triggers the system to produce a new

transformation program that is consistent with the examples that it has so far. During

the process, the system explores different ways of partitioning the examples and gains

the knowledge of whether a group of examples can lead to a valid partition that can

generate at least one consistent branch program. Therefore, we can maintain a record of

the previous running information so that the system can learn from its past experience

to guide the current partitioning. To fully utilize the previous knowledge, our approach

17

learns a distance metric and integrates it into the partitioning. By applying distance met-

ric learning, the system will assign large distances among the examples that cannot form

a valid partition and assign small distances among the examples that can generate a valid

partition. Through this distance metric, the formed clusters are less likely to violate any

constraints owing to the small distances among the examples. Moreover, this distance

metric can be used to incorporate unlabeled inputs as training data to improve the classi-

fier’s accuracy. Here, unlabeled inputs refer to the inputs that are not used as examples.

We first use the distance metric to calculate the distances from the unlabeled entry to

each partition. Our approach then assigns the unlabeled entry into the corresponding

partition based on its relative distances to other partitions. These unlabeled inputs along

with examples are used to train the classifier used as the conditional statement, which

reduces the required number of manually provided examples.

To summarize, our approach has the following contributions:

• exploiting the iterative process to collect constraints

• learning a distance metric based on all known constraints to efficiently partition

examples into clusters

• utilizing the unlabeled data to improve the accuracy of the conditional statement,

which reduces the number of required examples.

3.1 Construct Conditional Transformations

Our approach iteratively learns conditional statements for PBE systems as shown in

Algorithm 1. The approach in every iteration can be broken into 4 high-level steps: (1)

partitioning the examples, (2) learning the classifier, (3) generating branch programs for

all the partitions and (4) generate the final transformation program. We focus on the first

18

steps in the chapter. To take advantage of the information obtained from previous itera-

tions, the approach also maintains two sets of constraints: (1) cannot-merge constraints

and (2) must-merge constraints. In each iteration, these constraints are used to improve

the performance of partitioning and classifier learning.

Definition 2 Cannot-merge constraints: each cannot-merge constraint in this set con-

tains a unique group of examples that are not compatible together. Must-merge con-

straints: each must-merge constraint in this set contains the examples that are already

in the same partition.

Every time the user provides a new example, the approach first partitions the exam-

ples (line 1). The partition function takes five arguments: the cannot-merge constraints

R, the must-merge constraints M , all the examples E, the unlabeled data U and the

parameters Dw for the distance metric. It learns a distance metric Dw to partition the

examples into several clusters. During the execution, it also adds the newly discovered

constraints into the constraint sets and updates the distance metric parameters when nec-

essary. The set of must-merge constraints (M) is cleared at the beginning of every itera-

tion, as the newly provided examples can change the membership of previous examples.

The approach clears M to allow different partitions to be formed in the new iteration.

Second, the approach learns a classifier for the partitions (line 2). It uses the examples

along with the unlabeled inputs to train the classifier. This classifier serves as the con-

ditional statement. Third, the approach generates branch programs that are consistent

with the examples in each partition (line 3). Finally, our approach combines the partition

transformation programs prog1, prog2, ... with the conditional statement g to create the

transformation program (line 4).

19

Algorithm 1: Create Transformation Program
Input: examples E = φ, unlabeled data U , cannot-merge constraints R = φ,

must-merge constraints M = φ, distance metric Dw

data preprocessing
while user provides a new example do

E = E ∪ e
M = φ

1 partitions=partitioning(R,M,E, U,Dw)
2 g=learnClassifier(partitions, Dw, U)

for pi in partitions do
3 progi=learnBranchTransformation(pi)

4 create transformation program by combining g and {prog1, prog2, ...}

Our approach can be easily applied to other PBE systems to learn the conditional

statement, as it does not require knowing how the transformation programs are gener-

ated. It only needs to know whether the PBE system can successfully generate transfor-

mation programs from a group of examples.

3.1.1 Data Preprocessing

We represent the records in two different forms. One representation (token sequence)

is used to derive the branch transformation program. The other representation (feature

vector) is used for the third-party module to learn the classifiers.

Our approach first tokenizes both the input and output of the examples into token

sequences. These sequences are then used to derive the branch programs. Meanwhile,

our approach also converts the inputs of all records into feature vectors. The features can

be categorized into two types: (1) counts of tokens and (2) the average indexes of tokens

in the sequence. To create the features, we use both token types and their contents.

As shown in Example 1, “H”, “.”, etc. are used as features. We collect these tokens

20

with their contents from all records. We only keep the frequently appearing tokens by

discarding some rare tokens that appear in less than 10% of the entries.

With the initial feature vector, we decorrelate the features by removing the features

whose values on all records are a single linear transformation of the values of another

feature. If there is a set of features whose values on all records are a single linear trans-

formation of each other, we only keep one feature of this set to reduce the dimensionality

of the feature vector. We then normalize the features into [0, 1] individually.

Example 1 As shown in Figure 3.1, a string “9.75 in|16 in HIGH” can be tokenized

as “START NUM(9) Period(.) NUM(75) BNK LWRD(in) VBAR(|) NUM (16) BNK

LWRD(in) BNK UWRD(H) UWRD(I) UWRD(G) UWRD(H) END”. The counts of dif-

ferent tokens: NUM: 3, UWRD: 4, LWRD: 2, etc. The NUM pos is the feature capturing

the average index of its corresponding token (NUM) in the record. Its value (4) is the

rounded up average position of the three NUM tokens (1, 3 and 7). Our approach uses

these token counts and their average indexes to create the initial feature vector as shown

in the third row of Figure 3.1. The feature vector after decorrelation and normalization

is shown in the forth row. The number of features shown in the feature vector is smaller

than the number of features in the initial feature vector, as certain rare tokens are dis-

carded and some features are removed after decorrelation.

3.1.2 Partition Algorithm

The partition algorithm in each iteration places the examples into several clusters where

each cluster can be covered by the same branch transformation program. We prefer a

smaller number of partitions, as this often leads to a more concise program with fewer

conditional branches.

21

Figure 3.1: Token Sequence and Feature Vector for a String

The algorithm takes a set of inputs. E is the set of the examples given by the user. U

is a set of original inputs randomly selected from all original inputs that are not used as

examples. Dw is the distance metric learned from the previous iteration. The distance

metric here is a weighted Euclidean distance and Dw contains the weights for all the

features. R contains all the known cannot-merge constraints so far. M contains all the

must-merge constraints discovered in the current iteration. As the new examples given

by the user may change the previous partitioning, M is set to empty at the beginning of

each iteration. The merge(pi, p) merges two partitions (pi and pj) into one partition.

If a partition does not contain a program that is consistent with all its examples, the

partition is noted as φ.

Our partitioning algorithm essentially performs a constrained agglomerative cluster-

ing. As shown in Algorithm 2, each example becomes a partition pi at the beginning.

Our algorithm continues running if there are still partitions to merge. In each round,

it tries to find the two closest partitions and merge them into one. To calculate the

distance between two partitions, we use the minimal distance between the examples of

the two partitions rather than the centroid-based distance, as the examples of a partition

22

Algorithm 2: Partition Algorithm
Input: examples E, unlabeled data U, cannot-merge constraints R, must-merge

constraints M = φ, distance metric Dw

Output: partitions P

create a partition pi for each ei ∈ E
while ∃pi, pj ∈ P merge(pi, pj) 6= φ do

1 use Dw to find two closest partitions px, py
2 pz = merge(px, py)
3 if pz = φ then
4 R = R ∪ {{ei | ei ∈ px ∨ ei ∈ py}}
5 Learn distance metric Dw using U , R and M

else
6 P = P \ {px, py}
7 P = P ∪ {pz}
8 update M with P

Return P

in the feature space can form irregular and non-spherical shapes. The ex and ey are the

examples belonging to partitions pi and pj .

d(pi, pj) = min{d(ex, ey)|ex ∈ pi, ey ∈ pj}

If the merger cannot generate a valid partition (pz = φ) (line 3), the algorithm

records a new cannot-merge constraint with all the examples in pi and pj . It adds this

constraint to the cannot-merge constraint set R (line 4). It then uses the updated cannot-

merge and the must-merge constraints to refine the distance metric Dw (line 5), which is

described in the next section. With the updated distance metric, it finds the two closest

partitions without contradiction to the constraints.

If the merger succeeds, the previous two partitions are removed from partitions P

and the new partition (pz) is inserted into P (line 6 and 7). It also updates the must-

merge constraints M using the current clusters that have at least two examples (line 8).

The examples in the partition ({ei|ei ∈ p}) form one must-merge constraint.

23

Example 2 Suppose the user provides the first four records in Figure 1.1 as examples.

The algorithm now needs to partition these examples. In the previous iteration, the

system has already successfully learned a program with three examples and identified

one cannot-merge constraint (R1, R4 and R3). Suppose there are three partitions in the

current iteration: (1) R1 and R3 are in one partition (R1, R3), (2) R4 is in the second

partition and (3) R2 is in the third partition. Thus, R1 and R3 constitute one must-merge

constraint. Because R1 and R3 in the must-merge constraints have different “.” counts

(two “.” in R1 and zero “.” in R3). This indicates the examples can have different

numbers of “.” in the same partition. At the same time, the cannot-merge constraint

with R1, R4 and R3 shows that differences in the number of “|” and “.” indicate that

these examples may not be put into the same partition. Combining the information from

both must-merge and cannot-merge constraints, the distance metric learning module

can figure out that the examples with different numbers of “|” should not be in the same

cluster while the different number of “.” does not matter. It will assign large distances

among records with different numbers of “|” and assign small distances to the records

with different number of “.”. Therefore, the algorithm will put the R2 record into the

same partition as R1 and R3.

3.1.3 Distance Metric Learning

Our approach learns a weighted Euclidean distance that is a special case of the Maha-

lanobis distance [Mahalanobis, 1936]. This weighted Euclidean distance is used to

select partitions to merge. The weights of the features are used to capture the impor-

tance of features in calculating the distance. The higher the weight for a certain feature,

the larger the distance incurred due to the variance on this feature between two records.

d(x, y) = ‖x− y‖w =
√∑

iwi(xi − yi)2

24

The x and y are two feature vectors of two records and wi is the weight for the

i-th feature. The Dw = (w1, w2, ...) is the vector containing all the weights. We

use the weighted Euclidean distance for two reasons: (1) lower cost to calculate than

Mahalanobis distance as our program interacts with users on the fly, which requires a

quick response, (2) the weights in the distance metric are more interpretable.

To incorporate the constraints, our objective function is as follows.

argmin
w>0

∑
i

‖xi − exi‖w + a · g(w)− b · h(w) (3.1)

g(w) = ln(
∑
Xm

∑
xi,xj∈Xm,i 6=j

‖xi − xj‖w) (3.2)

h(w) = ln
∑
Xr

max
xi,xj∈Xr

‖xi − xj‖w (3.3)

The first component is the sum of the squared weighted Euclidean distance from

each unlabeled input to its cluster. To find which cluster this input belongs to, we simply

assign the input to its closest partition. To calculate the distance between the input and

a partition, we use the smallest distance between the input and the examples in that

partition as follows:

d(x, p) = min{
∥∥x− einputi

∥∥
w
| ei ∈ p} =

∥∥x− einputx

∥∥
w
. (3.4)

Here, x is the input of an unlabeled record, p is the partition and einputi is the input of an

example ei in partition p. The distance between an unlabeled record and a partition can

also be represented as ‖x− einputx ‖w, which is the weighted Euclidean distance between

x and its closest example einputx in p.

The g(w) is the penalization term corresponding to the must-merge constraints. A

must-merge constraint Xm means the examples in this constraint should be in the same

partition, which implies that these examples should be close to each other so that they

25

can form a cluster. Therefore, we penalize the sum of the distances between examples

in the must-merge constraint.
∑

xi,xj∈Xm,i 6=j ‖xi − xj‖w adds the distances between all

pairs of examples xi and xj in one must-merge constraint Xm. It then sums over all the

different must-merge constraints.

The h(w) is the penalization term corresponding to the cannot-merge constraints.

The cannot-merge constraint Xr means the examples in this constraint should not be

in the same partition together. However, a subset of the examples can still be in the

same partition. For example as shown in Figure 1.1, R1, R4 and R3 together are not

compatible, but R1 and R3 can be in the same partition. Intuitively, the examples in the

cannot-merge constraint should at least have one pair of examples that are extremely far

from each other. This can also be interpreted as the requirement that the farthest two

examples in this constraint should be extremely far away from each other. To model this

type of constraint, we first use a max operator to find the farthest examples xi and xj by

maxxi,xj∈Xr ‖xi − xj‖w in each constraint Xr and then try to maximize the distance of

this pair of examples by minimizing its negative values. This term then sums over all

the different cannot-merge constraints. The costs a and b provide a way of specifying

the relative importance of the two types of constraints. The a is usually set as a large

coefficient and b is set according to the ratio between the number of constraints in the

must-merge and the cannot-merge sets.

As there is a max operator in the objective function, we propose an iterative opti-

mization algorithm that alternates between finding the farthest pair in the cannot-merge

constraints and finding the optimal w. The algorithm works as follows:

• Find the farthest pairs of examples xi and xj in each cannot-merge constraint Xr.

• Optimize the objective function in Equation 3.1 where h(w) =

ln
∑

Xr
‖xi − xj‖w using the gradient descent.

26

Firstly, the optimization algorithm fixes on w to find the farthest pairs of examples in

each cannot-merge constraint group to remove the max operator in the objective func-

tion; the algorithm later fixes on these farthest pairs of examples to find the w that makes

the objective function achieve the minimum value using the gradient descent algorithm.

The algorithm performs a line search to select the right step size to ensure w > 0 during

the search. This process iterates until reaching a fixed number of iterations or the change

of the objective function is below a threshold. As the objective function’s value always

decreases in each step of the optimization, our algorithm will finally converge to a local

optima.

Figure 3.2: Weights of Different Features Change Over Iterations

Example 3 Figure 3.2 shows that the weights of features change as the iteration number

increases. The size of each color corresponds to the weight of different features. At the

beginning, we can see all the features have the same weight. As the approach learns from

the constraints accumulated across iterations, the “|” feature (count of “|”) weights

more and the “.” weights less.

27

3.1.4 Learning the Classifier

Our approach learns a multi-class classifier as the conditional after an iteration. The

users are only willing to provide a small number of examples, which are usually 2-5

examples per partition. Relying on data solely from examples can result in a classifier

with poor prediction performance, which in turn may require the user to provide more

examples to improve the classifier’s performance. Therefore, we augment the training

data with both the examples and the unlabeled inputs assigned to that partition and then

train a classifier to recognize these partitions. The data in each partition can be seen in

Figure 3.3. For each partition, the upper table shows the examples of that partition. The

bottom table shows the unlabeled data that has been assigned to this partition as it has

the shortest distance to this partition as mentioned in previous section. Later, we can use

the original records from both examples and unlabeled entries to train a SVM [Chang

and Lin, 2011] classifier as the conditional statement for the transformation program.

We filter the unlabeled data before using it as the training data. As we mentioned

before, the unlabeled inputs are added into the closest partition using the learned dis-

tance metric. To prevent the approach adding raw inputs into the wrong partition, we

follow the steps in Algorithm 3 to keep only the inputs that we are certain about their

labels.

The algorithm 3 iterates over all the unlabeled data ui in each partition pi. First, it

computes the distance d1 between the unlabeled input (ui) and the partition it belongs to.

The distance between an input and a partition (getDistance) is defined in Equation 3.4.

The algorithm then computes the distances (d2) between the input ui and all other parti-

tions pj (line 1). If any distance d2 is close to d1 and the difference is within a threshold

ε (line 2), it means the distances from the input to the two partitions are very close and

the input lies near the boundary of the two partitions. We are not confident with the class

label for these raw inputs. To avoid adding the inputs into the wrong class, we remove

28

Figure 3.3: The examples and the unlabeled data in each partition

these unlabeled inputs from the partitions. In practice, we have found that setting the ε

to 10% usually achieves a good result. Second, our approach sorts the remaining unla-

beled inputs in the ascending order based on the distance to their partition. We then only

keep the top K unlabeled inputs as the training data. We usually set the K to be 10 times

the number of the examples in that partition. Finally, we use the inputs of the examples

and the remaining unlabeled inputs as the training data to learn a SVM [Chang and Lin,

2011] classifier.

29

Algorithm 3: Filter the unlabeled data in each partition
Input: partitions P , unlabeled data U

for pi ∈ P do
for ui ∈ pi do

1 d1=getDistance(ui, pi)
for pj ∈ P and pj 6= pi do

d2 = getDistance(ui, pj)
2 if (d2 − d1)/d1 < ε then

delete ui

for pi ∈ P do
sort Upi ascendingly based on distance
keep top K elements in U

3.2 Evaluation

We describe our datasets, experiment setup and then report the evaluation results. Our

evaluation first demonstrates that our approach is more efficient and requires less num-

ber of examples compared to the state-of-the-art approach [Gulwani, 2011] and other

alternatives. Moreover, we also show that our design decisions are effective by compar-

ing against different versions of the conditional statement learning algorithm.

3.2.1 Datasets

We identified 30 scenarios that require conditional transformations. The description of

each scenario can be seen in the Appendix. Part of the scenarios were collected from

online Excel user forums. We also manually collected conditional transformation sce-

narios to increase the number of test scenarios. The data was crawled from websites of

museums by graduate students for final course projects, which required them to inte-

grate data from multiple sources and build mash-up applications. They were required

to perform a variety of transformations to convert the data into a suitable format. We

30

avg size min formats max formats avg formats
scenario 350 2 12 4.4

Table 3.1: Data profile

extracted the editing scenarios from these projects. As shown in Table 3.1, one scenario

contains about 350 records on average. The average number of formats for a scenario is

4.4, the maximum is 12 and the minimum is 2. The scenarios range from two formats

transformation such as the example shown in Figure 1.1 to the twelve formats transfor-

mation which requires learning the month to number conversions such as “Jan” to “1”,

“Feb” to “2”, etc.

3.2.2 Experiment Setup

We performed the experiments on a laptop with 8G RAM and 2.66GHz CPU. To fully

evaluate our approach, we compared 7 different alternatives described below to validate

our design decisions. We designed these alternatives to separately investigate the effects

of the three key design differences: (1) the weighted Euclidean distance scoring func-

tions compared to the compatibility score and directly applying Euclidean distance (DP

v.s SP v.s NP), (2) utilizing the constraints collected from previous iterations compared

to not utilizing the previous constraints (IC v.s non-IC) and (3) incorporating unlabeled

data in learning a classifier compared to not incorporating the unlabeled data (ED v.s

non-ED). After learning the conditional statements, these different alternatives all use

our implementation of Gulwani’s approach to synthesize the branch programs.

• Naive Partitioning (NP): This algorithm directly uses Euclidean distance to select parti-

tions to merge.

• Naive Partitioning with Incremental Constraint (NPIC): This algorithm utilizes all previ-

ous constraints besides using NP method

31

• Compatibility Score Based Partitioning (SP): This is the state-of-the-art approach [Gul-

wani, 2011] that calculates the compatibility score as described in the previous work

chapter to decide the partitions to merge.

• Compatibility Score Based Partitioning with Incremental Constraints (SPIC): This is the

version of SP approach that uses previous constraints.

• Distance Metric Based Partitioning (DP): This method learns a weighted Euclidean dis-

tance with only constraints discovered in the current iteration. The weighted Euclidean

distance is used to choose partitions to merge.

• Distance Metric Based Partitioning with Incremental Constraints (DPIC): this approach

learns the weighted Euclidean distance with all the known constraints.

• Distance Metric Based Partitioning with Incremental Constraints and Expanded Training

Data (DPICED): It is the approach introduced in this paper. Besides DPIC, it also

uses the learned distance metric to add unlabeled data into each partition to expand

training data for learning the classifier.

All 7 algorithms above use agglomerative clustering, which greedily selects the parti-

tions to merge until there are no partitions to merge. However, as these approaches use

different scoring functions, they give them different ways of utilizing the constraints.

The DP, DPIC and DPICED can learn from the constraints to adjust its scoring function

(distance function). NP and NPIC basically check whether the partitions to merge are

contained in cannot-merge constraints. If they appear in cannot-merge constraints, they

will skip this pair, select the partitions with the second best score and check with the con-

straints again. As SP and SPIC need to calculate the compatibility score, they exploit

both the cannot-merge and must-merge constraints to obtain the compatibility infor-

mation to avoid redundantly verifying whether two partitions are compatible. Besides,

32

SPIC’s must-merge constraints are not cleared after each iteration, as SPIC only needs

to extract the compatibility information from these constraints.

3.2.3 Metrics

To measure the performance of approaches above, we use the following metrics:

• Total Time: the time (seconds) used to correctly transform all records in a scenario, which

is the sum of the time used in each iteration.

• Time per Iteration: the time (seconds) used to generate the transformation program in one

iteration.

• Number of Examples: the number of examples required to successfully transform a sce-

nario where all entries are converted correctly. It reflects the number of iterations.

• Constraint Number: the number of cannot-merge constraints encountered in transforming

a scenario. The approach identifies a cannot-merge constraint when it tries to merge two

incompatible partitions.

• Success Rate: the percentage of scenarios that can be correctly transformed under 10

minutes. Otherwise, it is too long for a user to continue working on that scenario.

3.2.4 Experimental Results

As shown in Table 3.2, we can see that the distance metric learning based approaches

(DPICED, DPIC, DP) have higher success rates over Euclidean distance based

approaches (NPIC, NP) and compatibility score based approaches (SPIC, SP). The last

four approaches (NPIC, NP, SPIC, SP) can take an extremely long time (more than 10

minutes) on certain scenarios. Especially, the compatibility score based approach (SPIC,

SP) can only transform 77% of scenarios in less than 10 minutes.

33

DPICED DPIC DP SPIC SP NPIC NP
Success Rate 1 1 0.97 0.77 0.77 0.93 0.87

Table 3.2: Success rates for different approaches on all scenarios

Figure 3.4: Comparing DPICED with 3 other groups of approaches: (G1) DPICED vs
DPIC vs DP, (G2) DPICED vs SPIC vs SP and (G3) DPICED vs NPIC and NP

Excluding those failed scenarios, we also compared our approach (DPICED) against

other approaches on the total time, time per iteration and number of required examples.

To prevent the failed scenarios dominating the averaged results, we compared on the

scenarios that all the approaches can successfully transform. As different approaches

have few common successfully transformed scenarios, we performed the comparison

within three groups where the approaches in each group can successfully transform all

the scenarios in that group. The results are not comparable across groups. We first com-

pared DPICED with DPIC, and DP and then compared DPICED with SPIC, and SP as

well as compared DPICED with NPIC, and NP. The results are displayed in Figure 3.4.

34

The results in Figure 3.4 show that DPICED requires less time per iteration com-

pared to other approaches and less number of examples which means fewer iterations.

These two improvements combined contribute to the less total time compared to other

alternative approaches. Excluding the failed scenarios, the DPICED still saved 6 and 10

seconds compared to DPIC and DP; saved 17 and 23 seconds compared to SPIC and

SP; used 28 and 37 seconds less compared to NPIC and NP in terms of total time. We

conducted paired one-tailed t test. The results suggest that the improvements were sta-

tistically significant (p < 0.05) except when comparing DPICED with DPIC on the time

per iteration. As DPICED extend DPIC to incorporate more unlabeled data to improve

the accuracy of the classifier, it only helps DPICED to reduce the number of required

examples. But this extension does not affect the time per iteration in generating the

transformation program.

The differences in the total times are because of the variance in the total number of

discovered cannot-merge constraints. The higher the number is, the more failed merges

the approach encounters, which in turn wastes more time. A better algorithm can learn

from previous failed merges to avoid intersecting these partitions in the future. For

example, by learning from the constraints to adjust the Euclidean distance metric, the

DPICED approach had much less number of failed mergers compared to SPIC, SP,

NPIC and NP. The reason that SP and SPIC have extremely high number of encoun-

tered constraints is because computing compatibility score requires fully verifying the

compatibilities over a large number of partitions. On the contrary, other scoring func-

tions don’t require verifying the compatibility. Furthermore, the approaches utilizing

the previous constraints will avoid redundant work; they used less time compared to

their counterparts which didn’t record previous constraints. For example, DPIC, SPIC

and NPIC all used less total time and less time per iteration compared to DP, SP and NP

35

Figure 3.5: DPIC used fewer seconds per iteration compared to SPIC and NPIC

respectively. To explain the experimental results and validate our algorithm design, we

will discuss the comparisons between different versions of the algorithm.

Utilizing the information from previous iterations can improve the system effi-

ciency. The efficiency of the system is measured by the average time per iteration that

reflects the time used by the system to generate a program. The approaches that utilized

the previous constraints avoided redundant work; they used less time compared to their

counterparts which didn’t record previous constraints. In Figure 3.4, DPIC, SPIC and

NPIC all used less time per iteration compared to DP, SP and NP respectively.

Learning the weighted Euclidean distance improves the system efficiency com-

pared to the compatibility score and Euclidean distance. We compared DPIC with

SPIC and NPIC. The results are shown in Figure 3.5, where DPIC used less time per

iteration compared to SPIC and NPIC. The improvement in the time per iteration comes

from the variance in the number of discovered cannot-merge constraints. The higher the

36

DPICED DPIC
Accuracy 0.952 0.928

Example Number 6.4 8.6

Table 3.3: Classifier accuracy

number is, the more failed mergers the approach encounters, which in turn wastes more

time. A better algorithm can learn from previous failed mergers to avoid intersecting

these partitions in the future. For example, by learning from the constraints to adjust the

Euclidean distance metric, the DPIC approach had much less number of failed merg-

ers compared to SPIC and NPIC. SPIC had extremely high number of cannot-merge

constraints, as computing compatibility score requires fully verifying the compatibili-

ties over a large number of possible partitions. Furthermore, as more examples were

given, the time differences become more evident. For example, Figure 3.6 shows that

the time per iteration for one scenario increases as the number of examples increases

and the time saving also becomes larger. For every merge, Euclidean distance based

methods calculated the distances between all partitions and selected the pair with the

smallest distance. It is usually efficient to compute the Euclidean distance or weighted

Euclidean distance. On the contrary, the compatibility score based approaches require

calling the comp functionO(n3) times to select two partitions to merge and checking the

compatibility of partitions is expensive. Figure 3.6 shows that SPIC increased rapidly as

more examples were given. It also shows that the learned weighted Euclidean distance

function (DPIC) outperforms directly applying Euclidean distance function (NPIC). As

the number of examples grows, more constraints would be discovered. the NP based

algorithms will have more failed merges, as it cannot adjust its distance metric to avoid

merging likely incompatible partitions.

Augmenting the training data with unlabeled data can reduce the required

number of examples. The saving in the number of examples is mainly due to the

37

Figure 3.6: Time per iteration increases as example number grows

improved accuracy of the learned classifier. The poor classifier classifies the entry into

a wrong category and then a wrong transformation would be applied to this entry. This

will result in an incorrect result, which requires the user to provide a new example.

Therefore, the classifier with higher accuracy would reduce the number of required

examples. By incorporating unlabeled data as training data, the DPICED method suc-

cessfully increased the classifier’s accuracy from 0.928 to 0.952 compared to DPIC on

the unlabeled data. As a result, it reduced the average number of required examples

from 8.6 to 6.4 as shown in Table 3.3.

Using DPIC and DPICED to partition the examples does not increase the num-

ber of conditional branches in the final program. Gulwani, 2011 mentioned that

using compatibility score to merge partitions practically leads to a smaller number of

38

Figure 3.7: The number of conditional branches in the final program generated by dif-
ferent approaches

ID Original Target
P1 Birds of California Birds of California

untitled (Seascape) Seascape
P2 #15 #15

Archtypes Archtypes
P3 untitled (forest landscape) forest landscape

Table 3.4: The partitions of example of NPIC

partitions, which is more likely to be the correct transformation program. As agglom-

erative clustering with constraints can get stuck in local optima [Davidson and Ravi,

2009], where there are no more compatible partitions to be merged, even though other

sequences of merging may lead to fewer partitions. However, as our approach restarts

the partitioning in every iteration and refines the distance metric by learning form the

accumulated constraints, it is likely that our approach can get out of the local optima in

the new iteration.

39

We compared the 7 approaches on all the 23 scenarios that SP can successfully trans-

form. We noticed that DPICED, DPIC SPIC and SP all can achieve the same smallest

of partitions when the system finished transforming the scenarios. However, DP used 3

partitions on one scenario instead of 2 partitions used by SP. NP and NPIC even failed

on one scenario shown in Table 3.4, where they were trapped into the wrong partitions.

The scenario in Table 3.4 aims to extract the names of artwork. If there were parenthe-

sizes, we wanted to extract the content inside them as the artwork’s name. Otherwise,

we kept the name the same as before. NPIC incorrectly placed two entries “Birds of

California” and “untitled (Seascape)” in the same partition, as the two examples were

compatible with each other and they had the closest Euclidean distance. It was trapped

into this wrong partition that caused a higher number of partitions in the end, as the

distance metric here is only determined by the inputs regardless of the constraints. Fig-

ure 3.7 shows the number of branches (number of partitions) related to the number of

examples. This figure only shows DPICED, DPIC, NPIC, SPIC, as DP, SP and NP

were exactly the same as DPIC, SPIC and NPIC respectively. We can see that SPIC and

DPICED (overlapped) always had the smallest number of partitions and successfully

finished transformation using 9 examples. The NPIC’s partition number kept increas-

ing as new examples were given. DPIC at certain step had more partitions, but as more

examples were given, it finally converged to the correct number of partitions by adapting

to the constraints.

40

Chapter 4

Adapting Branch Programs

The development of programming-by-example approaches (PBE) allows users to per-

form data transformation without coding [Lieberman, 2001]. The user can directly enter

the data in the target format and the system learns from these input-output examples to

generate a transformation program that is consistent with the examples.

Examples often have many interpretations. Users generally provide multiple exam-

ples in an iterative way to clarify their intentions. For example, in Table 4.1, a user wants

to extract the year, manufacturer, model, location, and price from car sale posts. The left

column shows the titles of the car sale posts and the right shows the target values. The

user can directly enter the target data (2000 Ford Expedition los angeles $4900) for the

first entry as an example. The system synthesizes a program and applies the program to

the rest of the data. The user checks the transformed results and provides examples for

any incorrect results to refine the program until she determines the results are correct.

PBE systems typically generate an entirely new program as users provide new exam-

ples. Their time complexity is exponential in the number and a high polynomial in the

length of examples [Raza et al., 2014]. This prevents these PBE systems from being

applied to real-world scenarios that require many or long examples to clarify a user’s

intention.

We observe that the programs generated from previous examples are usually close

to the correct ones. A large portion of the programs remain the same as a user provides

additional examples to refine the program. Reusing the correct subprograms can greatly

reduce the computational costs.

41

Input Data Target Data

2000 Ford Expedition 11k runs great los angeles $4900 (los angeles) 2000 Ford Expedition los angeles $4900

1998 Honda Civic 12k miles s. Auto. - $3800 (Arcadia) 1998 Honda Civic Arcadia $3800

2008 Mitsubishi Galant ES $7500 (Sylmar CA) pic 2008 Mitsubishi Galant Sylmar CA $7500

... ...

Table 4.1: Data transformation scenario

Figure 4.1a shows the program learned using the first record as an example. The

program is basically a concatenation of several segment programs. The transformation

program is refined as the user provides new examples as shown in Figure 4.1b. P1 is the

synthesized program from the first row of Table 4.1, P2 is the program when the first two

rows are used as examples and the P3 is the returned program from the first three rows.

The solid rectangles represent segment programs and each segment program has two

position expressions in parentheses. The dashed rectangles show the position programs

that stay the same as the program changes. We can see that a large portion of the new

program does not change. From P1 to P2, 3 out 4 position programs stay the same.

From P2 to P3, 4 out of 6 are the same as before.

Based on the observation above, we present an approach to adapt programs with

additional examples. To adapt the program, first, the approach needs to identify the

incorrect subprograms. Since a transformation program often has multiple subprograms,

it is essential to correctly identify the incorrect subprograms to avoid missing them or

redundantly generating the correct subprograms. Second, the approach needs to be able

to generate correct subprograms to replace the incorrect ones.

To address the above challenges, we have two insights. First, we noticed that PBE

approaches typically generate traces. Traces are the computational steps executed by

a program to yield an output from a particular input [Kitzelmann and Schmid, 2006].

A trace defines how the output string is constructed from a specific set of substrings

from the input string. The PBE approaches then generalize over these traces to produce

42

(a) Program learned from the first example

(b) Programs refined by adding the second and third rows as examples

Figure 4.1: Program changes as more examples are added

the programs that are consistent with all examples [Summers, 1977; Kitzelmann and

Schmid, 2006; Gulwani, 2011; Lau et al., 2003; Harris and Gulwani, 2011; Singh and

Gulwani, 2012b,a]. As these traces encode the required input and output pairs for each

subprogram, they can be leveraged to detect the buggy subprograms. Second, the cor-

rectness of a program generated by PBE is only determined by whether it can output the

correct results specified by the traces. Thus, if a program can return the expected results

43

on the examples, the program is considered to be correct even though the program may

fail on future unseen examples.

Our approach can deterministically identify incorrect subprograms and adapt them

to additional examples. When the user provides a new example, our approach applies

the previously learned program on this new example. It records the outputs of all the

subprograms and compares them against the expected outputs shown in the trace of the

example. As the number of incorrect subprograms can be different from the number of

outputs in the trace, our approach precisely maps subprograms to their corresponding

expected outputs to identify the incorrect subprograms, whose execution results differ

from the expected ones. As the transformation program has subprograms, our approach

searches for the incorrect subprograms until no more incorrect subprograms are avail-

able. The approach then generates new correct subprograms to replace incorrect sub-

programs. The new subprograms are consistent with both previous and new examples.

To sum up, our approach makes the following contributions:

• iteratively generating branch programs from examples,

• deterministically identifying incorrect subprograms and refining them,

• enabling the PBE approach to scale to much more complicated examples.

4.1 Iteratively Learning Programs by Example

Our approach adapts programs with new examples by identifying incorrect subprograms

and replacing them with refined programs. We first introduce some notations. Let

P = [p1, p2, ..., pn] represent the transformation program. Every pi = const|(psi , pei)

44

corresponds to a segment program. It can be either a constant string or extracting sub-

string from the input. Currently, our approach does not adapt programs with loop state-

ments. psi and pei are the start and end position programs. A position program identifies

a position with certain context in the input. P[k,l] refers to a subsequence of programs

between index k and l (1 6 k 6 l 6 n). Let T ′
= [tp1 , tp2 , ..., tpn] represent the output

of the program P on the new example. The tpi is the execution result of the correspond-

ing subprograms pi. The tpsi and tpei are the corresponding execution results of psi and pei .

Let T = [t1, t2, ..., tm] represent the trace created from the new example. ti is a segment

trace, which defines how a substring in the output is produced from the input. If the

substring is copied from input value, tsi and tei refer to the start and end positions of the

segment in the input. LetH = {H1 = [h11], H2 = [h21, h22]...} represent the hypothesis

space used to generate programs of different numbers of segments. Hi represents the

space that has i segments. For example, H2 defines the set of possible programs that

create the output string using two segments. A segment hypothesis space contains all

possible programs for generating a segment. We use hij to represent all the jth segment

programs in the programs with i segments. Hi[r,t] represents the subsequence of segment

spaces between index r and t of Hi. Similarly, hsij and heij correspond to the start and

end position spaces of hij containing start and end position programs.

To adapt the transformation program on the new example, our approach creates

traces from the new example. It then iterates over these traces and utilizes these traces to

generate a list of patches. Each patch contains 3 elements: (1) a subsequence of incor-

rect programs, (2) their expected traces and (3) their corresponding hypothesis spaces.

The approach then uses these traces in the patch to update the corresponding hypothesis

spaces and generates correct subprograms to replace the incorrect subprograms. The

approach stops when it either successfully generates a transformation program that is

consistent with all examples or it exhausts all the traces.

45

Figure 4.2: P and T have the same number of segments

To refine a program using a trace with m segments, the approach selects the hypoth-

esis space Hm from H , which contains all the candidate programs with m segments.

Depending on the number of segments (n) in the current program (P), it handles two

cases separately: (1) n = m and (2) n 6= m.

4.1.1 P and T have the same number of segments

The number of the execution results of the segment programs is the same as the num-

ber of segment traces. The approach directly compares the tpi with the ti (line 3). If

any execution result differs from the trace, there is an incorrect segment program. The

algorithm adds this program (pi) with the corresponding trace (ti) and hypothesis space

(hmi) for further refinement.

For example, Figure 4.2 shows a program learned using the first two records in

Table 4.1. The new example is the third record. In the figure, we represent each segment

program using a rectangle with its start and end position programs in the parentheses.

The “Null” in the execution results represents that the segment program cannot generate

an output. The “-1” means the program cannot find a position matching the pattern spec-

ified in the position program. The first segment program in Figure 4.2 cannot generate

46

Figure 4.3: P and T have different number of segments

the correct substring (2008 Mitsubishi Galant) as specified in the trace. The algorithm

adds the program, its trace and corresponding segment hypothesis space into the patches

for refinement (line 4). As the third segment program’s output is correct, it doesn’t need

to be refined.

4.1.2 P and T have a different number of segments

Since the number of segment programs is different from the number of segment traces,

the algorithm cannot directly map the segment programs to the segment traces with

the same indices. However, it can find the mapping between segment programs and

segment hypothesis spaces. Meanwhile, the segment hypothesis spaces are mapped

to segment traces with the same indices. The algorithm can then align the segment

traces and segment programs since they are mapped to the same sequence of segment

hypothesis spaces.

The algorithm maps subsequences of segment programs to subsequences of segment

hypothesis spaces (line 5). To identify the mapping, it first obtains the output (OP[k,l]
) by

47

evaluating the subsequence of programs (P[j,k]) on old examples (O). It then identifies

the hypothesis space (Hm[i,j]). The part of old examples with the output OHm[i,j]
used

to derive Hm[i,j] should contain the same string as OP [k,l]. Thus, the space (Hm[i,j])

contains sequences of subprograms that can generate the same output as P[k,l] but these

sequences of subprograms can represent different segmentations.

Figure 4.3 shows the outputs of two segment programs. The p2 generates “los ange-

les $4900”. H3 contains a different segmentation where the last two segment hypoth-

esis spaces (h32 and h33) are derived from the traces with output “los angeles ” and

“$4900” separately. Thus, the second segment program is mapped to the second and

third segment hypothesis spaces in H3. The algorithm can then identify the aligned seg-

ment traces using the same indices as the segment hypothesis spaces. It then compares

whether the subprograms can generate the results as specified in the traces or whether

the lengths of the two sequences match to decide whether it should add this sequence of

programs for further adaptation (line 7).

The algorithm can further map the position programs with the traces. When

a sequence of segment programs are mapped to a sequence of segment traces, the

approach compares the output of the first start and the last end position programs with

the first start and the last end position traces to exclude the correct subprograms that can

generate the expected results (line 8 and 9). For example, the last segment program

in Figure 4.3 is mapped to two segment traces. The end position of the third segment

trace is 39, which is the same as the output of pe2 on the new example (39). Thus, the

current end position program is correct and can be reused. In the case that P and T have

the same number of segments, there is only one segment in T[i,j] and P[k,l]. The start

position program of the first segment (tps1) outputs “0”, which is the same as the start

position in the trace (ts1) in Figure 4.2. Therefore, the algorithm excludes this position

program from adaptation.

48

4.1.3 Adapting Incorrect Programs

As the algorithm has identified the patches consisting of incorrect subprograms, the

expected traces and the corresponding hypothesis spaces, it first uses the traces to update

these spaces. The algorithm first creates a basic hypothesis space using the traces and

merges this space with the identified hypothesis spaces to generate the updated spaces

using the same method described in the previous work section. It then generates the

correct subprograms from the updated spaces that is consistent with expected traces.

Finally, it replaces the incorrect subprograms with correct subprograms and returns the

new program (line 10).

Algorithm 4: Program Adaptation

Input: P program, H hypothesis space, T trace of the new example, O old
examples

Output: Pnew
n = size(P), m = size(T), patches = []

1 Hm = findHypothesisSpaceByLength(H , m)
2 if n = m then

for i = [1, m] do
3 if ti 6= tpi then
4 patches.add (([pi], [ti], [hmi]))

else
5 seqmap= {([k, l] : [i, j]) | OP[k,l]

∈ OHm[i,j]
}

6 for { [k, l] : [i, j] } in seqmap do
7 if (j − i) 6= (l − k) ∨ T[i,j] 6= TP[k,l]

then
patches.add((P[k,l], T[i,j], Hm[i,j]))

for (P[k,l], T[i,j], Hm[i,j]) in patches do
8 if tsi = tspsk then modify patch to remove psk
9 if tej = tpel then modify patch to remove pel

10 Pnew = apply(patches, P)
return Pnew

49

4.1.4 Soundness and Completeness

Our approach can always adapt the transformation program using the new example to

generate a correct program, if there exists a correct transformation program.

Proof 1 The approach is sound as it only returns the program that is consistent with

examples. To prove the completeness, suppose ∃P ∗ consistent with O ∪ N . O refers

to the previous examples and N is the new example. This implies ∃trace∗ trace∗ is the

trace of the correct program (P ∗) on the new example (N). First, the algorithm can

identify all incorrect subprograms w as it only excludes the correct subprograms that

generate expected outputs specified by trace∗. Second, the identified spaceHi contains

the correct subprograms. As the w is consistent with O, to replace w, the correct

subprograms (r) should also generate the same output as w on previous examples O. As

the recovered spaceHi contains all the alternative programs that can generate the same

outputs as w, the space contains r. Lastly, as the approach uses a brute force search

in the space to identify the correct subprograms r as described in Gulwani (2011), it

can identify the correct subprograms r. Therefore, the algorithm can generate P ∗ by

replacing w with r.

4.1.5 Performance Optimizations

There can be multiple traces for one input-output pair. To more efficiently adapt the

programs, our approach filters traces and then sorts the remaining traces to reuse most

of the previous subprograms.

The trace (T) should always have at least the number of segments as the number of

segments in the program (P). Because the approach generates simpler programs with

fewer segments first from all the programs that are consistent with examples, all the

programs with fewer segments have been tested and failed to transform the examples

50

correctly. Therefore, the approach only uses the traces with a larger or equal number of

segments to refine the program.

We aim to make the fewest changes to the program to make it consistent with the new

example. The approach sorts the traces in descending order based on their resemblance

to the T ′ . The approach iterates over the traces in the sorted list to adapt the program.

To sort the traces, the approach creates a set s1 that contains the outputs of the position

expressions. It then creates a set s2 that contains all the positions in the trace. The

approach then sorts the traces based on the score (size(s1 ∩ s2) + 1)/(size(s2) + 1)

. The high score indicates a large overlap between s1 and s2. It in turn means a close

resemblance between the program and the trace.

4.2 Evaluation

We implemented our iterative programming-by-example approach (IPBE). It uses the

iterative approach described in chapter 3 to learn the conditional statements and used the

approaches described in this chapter to synthesize the branch programs. We conducted

an evaluation on both real-world and synthetic datasets.

4.2.1 Dataset

Our real-world data consists of two parts. First, we collected the 17 scenarios from Lin

et al., 2014 (referred to as D1). Each scenario contains 5 records. We also used the 30

scenarios described in Appendix (referred to as D2).

Second, we created a synthetic dataset by combining multiple scenarios. The syn-

thetic scenarios are to transform records with multiple fields at the same time. We show

three example input and output records in Table 4.2. They have 7 columns in the output

records. To transform one record from the input to the output, the approach learns a

51

sequence of transformations, such as extracting the first name, extracting the last name,

etc., and combines them in one transformation program. By changing the number of

columns (1- 10) in the output records, we can control the complexity of the scenario.

Each scenario has about 100 records.

Name Year Dimension ...

Input
Cook Peter 1905 - 1998. (T.V) 22 x 16 1/8 x 5 1/4 inches ...
Clancy Tom 1858 - 1937 5/8 x 40 x 21 3/8 inches ...
Hicks Dan 1743 - 1812 6 15/16 x 5 1/16 x 8 inches ...
First Last Birth Death 1st 2nd 3rd ...

Output
Cook Peter 1905 1998 22 16 1/8 5 1/4 ...
Clancy Tom 1858 1937 5/8 40 21 3/8 ...
Hicks Dan 1743 1812 6 15/16 5 1/16 8 ...

Table 4.2: Synthetic scenario for generating the first 7 columns

4.2.2 Experiment Setup

We performed the experiments on a laptop with 8G RAM and 2.66GHz CPU. We com-

pared IPBE with two other approaches: (1) Gulwani’s approach [Gulwani, 2011] and (2)

MetagolDF [Lin et al., 2014]. We used our own implementation of Gulwani’s approach

rather than Flashfill in Excel 2013, as a large portion of scenarios in the test data cannot

be transformed by Flashfill. Since the goal of the experiment is to study the performance

of different approaches on synthesizing branch programs, we use the same conditional

learning approach described in chapter 3 for both IPBE and Gulwani’s approach. For

MetagolDF , we obtained the code from the authors and ran the code on our machine

to obtain the results on D1. We compared the three methods in terms of the time (in

seconds) to generate a program that is consistent with the examples.

52

Min Max Avg Median

D1
IPBE 0 5 0.34 0
Gulwani’s approach 0 8 0.59 0
Metagol 0 213.93 55.1 0.14

D2
IPBE 0 1.28 0.20 0
Gulwani’s approach 0 17.95 4.02 0.33
Metagol ∼ ∼ ∼ ∼

Table 4.3: Results of read-world scenarios

4.2.3 Real-World Scenario Results

The results on real world scenarios are shown in Table 4.3. We calculated the average

program generation time (in seconds) for each scenario. To calculate the time for IPBE

and Gulwani’s approach, we recorded the program generation time for all the iterations

until all the records were transformed correctly. We then averaged the program gen-

eration time across all iterations and refer to this average time as the generation time.

For MetagolDF , we used the experiment setting in Lin et al., 2014 and averaged the

program generation time for the same scenario.

The Min is the shortest time among the set of generation time for all scenarios. The

Max, Avg and Median are also calculated for the same set generation time. A 0 in the

results means the time is smaller than one millisecond. As we cannot easily change

MetagolDF to run it on D2, we only ran our approach and Gulwani’s approach on D2.

We can see that IPBE outperforms the other two approaches as shown in Table 4.3.

Comparing IPBE with Gulwani’s approach, we can see that reusing previous subpro-

grams can improve the system efficiency. MetagolDF treats each character as a token,

which enables it to do transformation on the character level. However, it also signifi-

cantly increases the search space, which causes the system to spend more time to induce

the programs.

53

Figure 4.4: Synthesizing time rises as column number increases

4.2.4 Synthetic Scenarios Results

To study how Gulwani’s approach and IPBE scale on complex scenarios, we created 10

synthetic scenarios with the number of columns in the output ranging from 1 to 10. We

gradually increased the number of columns so that the approaches had to learn more

complicated programs. We ran the two approaches and provided examples until they

learned the programs that can transform all records correctly and then measured the

average time used to generate a program.

The time in Figure 4.4 used by the two approaches increases as the number of

columns increased. However, IPBE scales much better compared to Gulwani’s approach

when more columns are added. The time saving comes from the fact that IPBE can

identify the correct subprograms and only refine the incorrect subprograms. The cost of

54

generating a new program is related to the portion of the program that requires updat-

ing rather than the actual size of the program. A program with more subprograms can

usually reuse more subprograms so that the time saving will be more evident.

55

Chapter 5

Maximizing Correctness with Minimal

User Effort

Programming-by-example (PBE) approaches [Lieberman, 2001] enable users to gener-

ate programs without coding. Recently, these approaches have been successfully applied

to data transformation problems [Gulwani, 2011] to save users from writing many task-

dependent transformation programs. For example, Figure 5.1(b) shows the dimensions

for a set of artworks. To extract the first degree (height) from the dimension, the user

enters “10” as the target output for the first entry. The PBE approach generates a pro-

gram that is consistent with this input-output pair (also referred to as example). It applies

the program to the rest of records to transform them. If the user finds any incorrect

output, she can provide a new example, the approach refines the program to make it

consistent with all given examples. The user often interacts with the system for several

iterations and stops when she determines that all records are transformed correctly.

Despite the success of generating programs using PBE approaches, the correctness

of the results is still an issue. Real-world data transformation often involves thousands of

records with various formats. Each record consists of raw data (input) and transformed

data (output). The users are often not aware of all the formats that they should transform.

They know whether the records are transformed correctly when they see them. But, they

lack the insight of the unseen formats of the records buried in the middle of datasets.

56

To help users verify whether the records are transformed correctly, existing PBE

approaches [Gulwani, 2011; Miller and Myers, 2001; Wolfman et al., 2001] provide rec-

ommendations or highlight certain records for the users. The user checks these records

and provides new examples for those incorrect records. Here, we consider a record

as transformed correctly (referred to as a correct record), when it is transformed into

the expected format. Otherwise, the record is considered incorrect (referred to as an

incorrect record).

Figure 5.1: Different rules for recognizing incorrect records

To generate such recommendations, there are several challenges. First, the dataset

is usually huge and the users need to see the results on the fly so that they can provide

additional examples if necessary. Fully transforming the entire dataset and analysing all

the transformed records to generate recommendations takes too long to be practical.

57

Second, the users’ intentions are highly task-dependent and there is not a universal

rule for determining whether the results are correct. Meanwhile, the approach should

be able to hypothesize users’ intentions accurately to provide useful recommendations.

For example, the scenario in Figure 5.1(a) is to encode different texts into numbers.

The users want to transform the three records into “3”, “2” and “1” respectively. After

giving the two examples in the dashed rectangle, the learned program does not transform

the ‘Fewer than 100’ into the expected value ‘1’, as it has not seen an example of that

type before. The problem is ‘Fewer than 100’ has different words from the inputs of

the two examples when they are represented using a bag-of-words model [Feldman and

Sanger, 2006]. To capture this incorrect record, we can use a rule to identify the records

that have different words in the input from the examples. However, in Figure 5.1(b),

the counts of numbers, blank spaces, quotes and “x” in the inputs are the same for the

third and the first record. We need to use a different rule that identifies the records

with different output formats to locate the incorrect records since the output of the third

record contains an “x” and blank spaces while the first two records do not have.

Third, the recommendation should place the incorrect records at the beginning of the

recommended list so that users can easily notice these records. Otherwise, users have

to examine many correct records before identifying the incorrect one, which would be a

burden.

Fourth, users are often too confident with their results to examine the recommended

records, which they regard as an extra burden [Panko, 1998; Ko et al., 2011]. Even when

there are incorrect records in the recommendation, the users may ignore them and stop

the transformation.

To address the challenges above, our approach samples records to allow users to

focus on a small portion of the entire dataset. It statistically guarantees that a user-

specified percentage of the records of the entire dataset is transformed correctly with

58

certain confidence when all records in the small sample are transformed correctly. Our

approach also maintains a library of different classifiers representing different rules for

checking whether a record is transformed correctly. It uses an ensemble method to

combine these different classifiers to automatically identify incorrect records in various

scenarios. To save users’ time in checking the recommendations, we provide users two

ways to label the recommended records: (1) users can confirm a recommended record

is correct or (2) they can provide the expected outputs for the incorrect records. Our

approach then learns from these labels and provides users with refined recommenda-

tions. Finally, besides providing the recommendation that exposes incorrect records to

users, we have also developed a method that identifies a minimal set of records that the

user should examine before finishing the transformation.

Our contributions are summarized below:

• minimizing the user effort in obtaining a user-specified correctness

• allowing users to focus on a small sample of a large dataset

• combining multiple classifiers based on different perspectives for verifying the

correctness of records

• refining recommendations when users confirm certain recommendations are cor-

rect or incorrect

• controlling the user overconfidence by requiring users to examine certain records

before finishing the transformation.

5.1 Verifying the transformed data

To verify the correctness of the transformed data, our approach samples records from

the entire dataset. The approach then automatically identifies the potentially incorrect

59

records and recommends these identified records for the users to examine. When the rec-

ommendations are shown to users, they can provide the expected values for the incorrect

records or they can confirm that a record is transformed correctly. Our approach uses

the records that the users have edited or confirmed as new examples to refine the recom-

mendations.

The user interface of our system is shown in Figure 5.2. The interface consists of

three areas:

• examples you entered: this area shows all the examples provided by the user.

There are also buttons with cross icons used for deleting previous examples

• recommended examples: this area shows all the potential incorrect records for

users to examine. If the user finds an incorrect record, she can click the record

and enter the target output in the pop-up window as in Figure 5.2. She can also

click the button with a check icon to confirm that the record is correct

• sampled records: this area shows all the records in the sample.

5.2 Sampling records

Our approach uses hypothesis testing to decide whether the number of incorrect records

in the entire dataset is below a certain percentage. The hypothesis is the percentage of

incorrect records is smaller than plower. The alternative hypothesis is the percentage

of incorrect records is not less than pupper. The plower represents that the percentage of

incorrect records that we want to achieve in the dataset. The pupper refers to a percentage

of incorrect records that we want to avoid (pupper > plower).

We use the binomial distribution B(n, p) to model the distribution of incorrect

records, as each record is transformed either correctly or incorrectly. The parameter

60

Figure 5.2: User interface

n is the number of sampled records. The parameter p is the probability that a record is

incorrect, which can also be interpreted to mean that a p fraction of records are trans-

formed incorrectly. To find the sample size for testing the hypothesis, we use the bino-

mial cumulative distribution function as shown in Formula 5.1 [Desu and Raghavarao,

1990]. Pr(x < Za;n, p) represents the probability that the number of incorrect records

(x) is less than Za in the binomial distribution B(n, p). We use 1−α and 1−β to adjust

our confidence level and power for the hypothesis test: (1) α controls the probability of

rejecting our hypothesis when it is true and (2) 1−β controls the probability of rejecting

the alternative hypothesis when it is false. Typically, the confidence level 1− α is set to

0.95 and the power 1 − β is set to 0.80 in practice [Desu and Raghavarao, 1990]. The

zα is the allowable number of incorrect records. If the incorrect number of records x is

61

smaller than zα, our hypothesis passes the test with confidence α and power 1− β over

the alternative hypothesis. Given α, β, n, pupper and plower, we can calculate zα based

on Formula 5.1.

Since the user ideally stops when there is no incorrect record in the sample, the x is

zero and it is strictly smaller than zα.

Pr(x < zα;n, pupper) > 1− β,

where Pr(x < zα;n, plower) < α
(5.1)

Demanding a lower error percentage, a higher confidence and power of the hypoth-

esis often requires a larger sample. For example, when plower = 0.01, α < 0.05, the

alternative hypothesis is pupper > 0.02 and 1 − β > 0.8, we need a sample of 910

records. Meanwhile, if we change the plower = 0.001 and pupper > 0.002, the minimal

sample size is 9635. However, we can configure the parameters to achieve the balance

between sample size and level of confidence to meet different user requirements.

5.3 Recommending records

Our approach automatically examines the records in the sample to identify potentially

incorrect records (line 2 to line 9 in Algorithm 5). It then sorts these records and recom-

mends one for the users to examine.

Our approach has two phases. First, it identifies the records (Rruntime) with runtime

errors. Runtime errors here are the errors that occur during the execution of transfor-

mation programs and cause the programs to exit abnormally. Second, our approach

identifies the questionable records (Rquestionable) with potential incorrect results when

there is no record with runtime errors.

62

Algorithm 5: Algorithm for recommending records

Input: Set of all the records R, transformation program P and MetaClassifier F
Output: Recommended set of Records R∗

Rruntime = [], Rquestionable = [], R∗ = []
1 Rs= sample(R)

for record r in Rs do
2 rt = applyTransformation(r, P)
3 if rt contains runtime error then
4 rt.score = number of failed position programs
5 Rruntime.add(rt)

else
6 score = F.getScore(rt)
7 if score < 0 then
8 rt.score = score
9 Rquestionable.add(rt)

if Rruntime.isEmpty() then
10 sort Rquestionable acscendingly based on record score
11 R∗ = Rquestionable

else
12 sort Rruntime acscendingly based on record score
13 R∗ = Rruntime

return R∗

5.3.1 Finding the records with runtime errors

Our approach finds the records that executing transformation programs on these records

show runtime errors. These records cause the learned program to exit abnormally in

execution. There are mainly two types of runtime errors: (1) the position program

cannot locate a position and (2) the segment program has a start position larger than the

end position.

For example, the program shown in Figure 5.3 is learned from the first three records

shown in Figure 5.1(b). The approach now applies this learned program to a new input

“H: 24 x W: 7 ” to extract the first degree information. The program uses the first

branch program program to transform this record. The start position program cannot

63

Figure 5.3: An example transformation program

locate a position in the input and output “-1”, as “24” does not appear at the beginning

of the input. The end position program cannot locate a position either, as there is no

“”” after 24. The corresponding segment program also has a runtime error too, as both

its position and end position are smaller than 0 (“-1”). The other case of runtime error

is that the segment program has a start position bigger than the end position. The two

position program of the segment program both successfully locate two indexes in the

input. However, the end position is before the start position, which will cause a runtime

error of the segment program.

To identify the records with runtime errors, our approach simply applies the learned

program to the sampled records, collects all the records with runtime errors and puts

them into the set Rruntime.

64

5.3.2 Building a meta-classifier for detecting questionable records

The set of binary classifiers used for building the meta-classifier can be categorized into

3 types: (1) classifiers based on the distance (fdist), (2) classifiers based on the agree-

ment of different programs (fprogram), and (3) classifiers based on the format ambiguity

(fambiguity).

5.3.2.1 Classifiers based on distance

This type of classifier calculates the distances from records to a set of records. Based

on the distribution of the distances, it identifies the records with distances that are larger

than certain standard deviations from the chosen references. To calculate the distance

between two records, the approach first converts the records to feature vectors and then

calculates the Euclidean distance between the two vectors. The features used here are

the same as the ones introduced in the previous section.

This type of classifier (fdist(ei| r, t, c)) is shown in Function 5.2. It classifies each

record ei as either a correct record (1) or an incorrect record (-1) based on its distance

(dei,r) from the reference (r). N is the number of records. Each classifier of this type

can be characterized using a triple (r, t, c). r represents the reference. It has two values:

“all records” or “examples”. The string “all records” specifies that the approach calcu-

lates the distance between the feature vector of the record (ei) with the mean vector of all

records except ei. The string “examples” means that the approach computes the distance

from the record (ei) to the mean vector of the examples. The t has three values: “input”,

“output” or “combined”. “input” and “output” here mean that only inputs or outputs

of the records are used to create feature vectors. “combined” means the input and out-

put are concatenated into one string to create the feature vector. The σ is the distance

standard deviation. The cσ indicates the number (c) of standard deviations. For exam-

ple, a classifier fdist(ei|“examples′′, “input′′, 1.8) identifies the records whose inputs

65

are more than 1.8 standard deviations (σ) away from the mean vector of the inputs of

examples .

fdist(ei| r, t, c) =


−1 dei,r > cσ

1 dei,r 6 cσ

where σ =
√

1
N

∑
i(dei, r − µ)2, µ = 1

N

∑
i dei, r

(5.2)

Since parameter triple (r, t, c) has many configurations, our approach generates all

configurations. Here, the value for c is selected a set of predefined decimal numbers.

The approach uses each configuration to create a binary classifier and adds the classifier

into the library of classifiers.

5.3.2.2 Classifiers based on the agreement of programs

This type of classifier identifies the records that consistent programs disagree about the

transformation results. Typically, our approach can generate multiple programs that are

consistent with given examples. Each program can be considered as an interpretation

of the examples. The classifiers of this type maintain a set of programs that are con-

sistent with the examples. The binary classifier identifies the records (output -1) that

the programs produce different results for the same input. Providing examples for these

records can help to clarify a user’s intention and guide the system to converge to the cor-

rect programs. However, to build such classifiers, directly generating all the consistent

programs and evaluating all these programs on records is expensive, as there are usually

a large number of consistent programs given a few examples.

To reduce the computational cost in building this type of classifier, we exploit the fact

the approach can independently generate the position programs. Our approach generates

all the consistent position programs instead of the whole branch programs and evaluates

these position programs on the records. This modification greatly reduces the number of

66

Figure 5.4: Candidate position programs for one segment program

programs that our approach is required to generate and evaluate, as the set of complete

programs can be considered as a Cartesian product of sets of position programs. For

example, in Figure 5.4, the start and end position of the substring “10” can both be

represented using a set of programs. Every start position program can combine with any

end position program to form a segment program. There would be 16 segment programs

if there are 4 start position programs and 4 end position programs. But the total number

of start and end position programs is only 8. Our approach only needs to generate and

evaluate 8 position programs instead of 16 segment programs.

5.3.2.3 Classifiers based on the format ambiguity

This type of classifier aims to capture those records that are potentially labeled with the

wrong format. The transformation program contains a conditional statement, which is

used to recognize the format for a record before applying any transformation. Currently,

we use an SVM multi-class classifier as the conditional statement as described in the

67

previous work section. The SVM classifier not only classifies the records to their formats

but also outputs the probability of the record belonging to that format. To identify

the records that are potentially labeled incorrectly by the SVM classifier, our approach

selects the records with the probability below a threshold θ. To select the right θ, our

approach first creates a classifier using each θ in a predefined set and adds it into the

classifier library. Later, our approach selects the classifier with the θ having the best

performance described in the next section.

Combining classifiers using ADABOOST: we use ADABOOST [Freund et al.,

1996] to combine classifiers above to create a meta-classifier (F (e)) for classifying

whether a record (e) is transformed correctly as shown in Function 5.3. The meta-

classifier outputs -1 for incorrect records and 1 for correct records. The output is 1, if

the weighted sum of the output of a set of binary classifiers (fi) is no less than 0; -1 if

the sum is negative. During training ADABOOST iteratively selects the binary classifier

(fi) from a pool of classifiers described above to minimize the error on the misclassi-

fied training instances. It also assigns weights (wi) to these classifiers indicating their

importance in the final meta-classifier.

F (e) = sign(
∑
i

wifi(e)) (5.3)

Our approach only uses ADABOOST to select the binary classifiers and learn their

weights once to create the meta-classifier. Our approach uses this meta-classifier for all

future transformations. Notably, the meta-classifier only defines the binary classifiers

to be used and the weights for them. The approach still learns the binary classifiers

constituting the meta-classifier for each specific transformation. Our approach learns

the parameters for the binary classifiers (fi) from the examples, records and consistent

68

programs that are unique to each iteration. It combines these learned binary classifiers

with the assigned weights to create the meta-classifier. The approach can use the meta-

classifier with the learned binary classifiers to identify incorrect records.

5.3.2.4 Sorting the recommended records

As the approach recommends multiple records, it places the records that are more likely

to be incorrect and contain more valuable information on the top of the recommendation

area shown in Figure 5.2. This saves users’ time in examining the recommended records

and the system can also obtain more informative examples from the users. Our approach

calculates a score for each record to measure how likely a record is incorrect and how

much information it can provide in synthesizing the program.

The records with runtime errors are all incorrect. The score for these records is the

number of failed subprograms including segment and position programs. A higher score

means the approach can learn more information from this record, if the user provides an

example for this record. The approach sorts these records in a descending order.

As to the records without runtime errors, we assume that the records that are more

likely to be incorrect can provide more information for the system. The approach uses

−
∑

iwi ∗ fi(x) in Function 5.3 as the score for each record. A higher score indicates

more classifiers or the classifiers with heavier weights consider the record to be incor-

rect. The approach sorts these records in descending order.

5.3.3 Minimal test set

We want to ensure that a user labels a minimum number of records, users are recom-

mended to validate at least one record in a minimal set of records by either confirming

the correctness of the record or entering a new example for that record. As mentioned

69

before, there are multiple consistent programs given a set of examples. These pro-

grams conflict with each other as they generate different results on certain records. The

minimal test set contains the records that these consistent programs disagree on the out-

puts. Ideally, we should ask users to verify the outputs of all the programs to identify

the correct programs. However, fully generating all the programs and executing them

on records is infeasible in practice for two reasons: (1) the users are waiting for the

responses on the fly and (2) the infinite number of conditional statements as there can

be an infinite number of decision hyperplanes in the feature vector space. Our approach

only generates all the consistent position programs and evaluates them on the records

to approximate all the programs that should be tested. To identify the minimal test set,

our approach simply uses the same set of records that are labeled as incorrect by the

classifier based on the agreement of programs. Our approach highlights these records

with blue borders in the GUI as seen in Figure 5.2. When the minimal test set is empty,

there are not conflicting position programs.

5.4 Evaluation

To evaluate the performance of our approach, we performed simulated experiments and

a user study to compare our system with alternative approaches. Transforming a dataset

usually requires several iterations in the evaluation. An iteration starts when the user

provides an new example and ends when the system has learned the transformation

program and applied the program to the rest of the data records.

70

5.4.1 Simulated experiment

There are two goals of this experiment: (1) to test whether our recommendation can

capture the incorrect records, and (2) to test whether our approach can place at least one

incorrect record on top so that users can easily notice these incorrect records.

5.4.1.1 Dataset

We used the 30 scenario described in Appendix. Each scenarios contains about 350

records. The data was gathered from student mash-up projects in a graduate-level

course, which required the students to integrate data from multiple sources to create

various applications. They were required to perform a variety of transformations to con-

vert the data into the target formats. Each scenarios contains two columns of data. The

first column shows the raw data and the second column shows the transformed data.

5.4.1.2 Experiment setup

To collect the training data for learning the meta-classifier, we should have both the

transformation results and the labels to indicate whether these records are correct or

not. Our approach first chose a record, provided the expected output and used it as an

example. It learned the transformation program and applied the program to the rest of

records. It compared the transformed data with the expected output and labeled each

record as correct or incorrect. It also calculated the confidence of the conditional state-

ment on each record. After collecting the data for the iteration, it started a new iteration

by identifying the first incorrect record and providing an example for that record. The

process ended when all the records were transformed correctly. Our approach collected

training data from all iterations of the 30 scenarios. We divided all the scenarios into 5

groups and ran 5-fold cross-validation. Our approach trained the meta-classifiers using

4 groups of training data and tested the meta-classifier on the remaining group.

71

We used two metrics below to evaluate our approach and alternative approaches in

each scenario:

• iteration accuracy: the percentage of iterations that our recommendations contain

at least one incorrect record out of all the iterations having incorrect records.

• mean reciprocal rank (MRR): the average of the reciprocal rank of the first identi-

fied incorrect record. Q is the total number of iterations and Ranki is the index of

the first incorrect record in the recommended list in the i-th iteration. If the rec-

ommendation fails to include the incorrect record and there exists one, the 1
Ranki

is set to 0.

MRR =
1

Q

Q∑
i=1

1

Ranki

We compared our current approach with our previous approach (Approach-β) [Wu

and Knoblock, 2014] and a baseline approach. The Approach-β also provides recom-

mendations for users to examine. The baseline approach recommends all records in the

sample for users to examine. It randomly shuffles these transformed records for users to

examine.

5.4.1.3 Results

As shown in Figure 5.5, our approach accurately captured the incorrect records in the

recommendation. The average of iteration accuracy of our approach in all scenarios is

0.98 compared to 0.83 with the Approach-β. The iteration accuracy is left blank for the

baseline approach. The baseline simply recommended all the records in each iteration

so that it had a 100% iteration correctness on all scenarios. The improvement is mainly

due to two reasons. First, our approach recommended multiple records compared to

that Approach-β only recommended one record in every iteration. Second, our meta-

classifier is an ensemble of a library of classifiers. The classifier used in Approach-β

72

Figure 5.5: Comparison results

is just one in the library. This ensemble of classifiers enables our approach to capture

a boarder range of incorrect records. Only scenario 9 and 18 have iterations in which

our approach failed to detect the incorrect records. These iterations require examples

for unseen input formats that are similar to previous examples, which make the system

fail to detect the difference. One example of the scenario 9 is shown in Table 5.1. The

users intended to extract the full prices for student tuitions (1st and 2nd record). Since

the third record only has the credit price, it should be transformed to “NULL”. However,

73

Raw Transformed
$33,926 per year (full-time) $33,926

$42,296 per program (full-time) $42,296
$1,286 per credit (full-time) $1,286

Table 5.1: One typical example of a failed iteration

given only the first and second record as examples, our approach did not know the user

required a different transformation for the third record, as it shared a very similar format

with two previous records. Thus, our approach did not recommend the 3rd record as a

potential incorrect record for users to examine.

Our approach can place the incorrect records on top of the recommendation, as the

average MRR of our approach in all scenarios is 0.75. It saved users’ time from fully

exploring a long list of records. The average MRR of Approach-β in all scenarios is

0.68. It did not place the incorrect record on top for most of iterations without runtime

errors. The MRR of the baseline approach was calculated based on the index of the

first incorrect record in the transformed records. We can see that both our approach

and Approach-β are well above the baseline, as the randomized shuffling can place the

incorrect records in the middle of the list.

5.4.2 User study

We performed a user study to evaluate our approach in real use cases. The goal of this

experiment is to test whether the users using our approach can achieve better correct-

nesses than the users of Approach-β with no more user effort.

5.4.2.1 Dataset

We collected 5 scenarios with about 4000 records for each scenario on average to eval-

uate the approaches. The first 2 records and the description of the scenarios are shown

74

in Table 5.2 to demonstrate the transformation. These transformations involve trans-

forming text into URIs by adding prefixes, replacing blank spaces with underscores or

reordering substrings such as s1, s2 and s5. The remaining of scenarios focus on extract-

ing substrings from the inputs such as s3 and s4.

5.4.2.2 Experiment setup

We used two metrics to measure the user performance (1) correctness, which is the

percentage of correct records when the users stopped transforming and (2) time, which

is the average time (in seconds) used by users in one iteration.

We recruited 10 graduate students and divided them into two groups: groupA and

groupB. We asked users in groupA to use our system and asked users in groupB to use

the Approach-β.

We used the training data gathered in the simulated experiment to train our meta-

classifier for recommending records. The plower and pupper were set to 0.96 and 0.99.

Our approach sampled 300 records in every iteration.

Scenario description Input Output

s1 change into URI
WidthIN http://qudt.org/vocab/unit#Inch

HeightCM http://qudt.org/vocab/unit#Centimeter

s2 change into URI
Dawson, William William Dawson
Lauren Kalman Lauren Kalman

s3 extract issue date
Thor I#172 (January, 1970) January, 1970

Machine Man II#2 NULL

s4 extract first degree
7 x 9 in. 7

6 13/16 x 8 7/8 in. 6 13/16

s5 change into URI
American thesauri/nationality/American

South African thesauri/nationality/South African

Table 5.2: Scenarios used in user study

75

5.4.2.3 Results

The results of the user study are shown in Table 5.3. Our approach achieved a correct-

ness higher than 0.99 in all scenarios. These correctnesses were within the user expected

correctness range. Compared with Approach-β, we can see our approach also achieved

better correctnesses in all 5 scenarios. Users in groupA not only had higher correctness

rates, but also used less time per iteration for 4 out of 5 scenarios and used the same

amount of time on the first scenario. We performed paired one-tail t test for the hypoth-

esis that our approach uses less time and has higher correctness than Approach-β. The

result shows that the improvements are statistically significant (p < 0.05).

Scenario
IPBE Approach-β

Correctness Time (sec) Example# Correctness Time (sec) Example#
s1 1 16 11.4 0.828 16 9
s2 0.998 17 13.4 0.994 26 9
s3 0.992 16 11.6 0.873 36 8.7
s4 0.997 14 14 0.983 17 11
s5 0.999 12 5.4 0.872 22 4.3

Average 0.997 15 11.1 0.91 23 8.4

Table 5.3: User study results

In the user study, we found that the users in groupA provided more examples than

users in groupB, as users in groupA can simply click a button to confirm a correct record

as a new example. The users confirmed several examples (2 - 5 examples) before stop-

ping transformation. Thus, the number of examples (Example#) provided by the users

in groupA is higher than the numbers in groupB as shown in Table 5.3. The groupA

users provided 11.1 examples and users in groupB provided only 8.4 examples on aver-

age. Providing more examples gives users more chances to refine the recommendation

and examine more records, which in turn leads to a higher correctness rate. Moreover,

the users in groupA also used less time. We found when the recommendation contained

incorrect records on top, it largely reduced the time users used to examine the results

76

compared to the time spent by users to directly examine the results when the recommen-

dation failed to capture the incorrect records.

77

Chapter 6

Related Work

In this chapter, I first discuss all the related approaches to provide a broad overview of

the approaches developed to handle data transformation. Second, I focus on the PBE

approaches developed for data transformation.

6.1 Data Transformation Approaches

Data transformation aims to transform the data from the source format to the target for-

mat. Depending on the task, data transformation can refer to different operations, such

as mapping numerical data into a specific range, or conversion between specific image

formats, such as GIF to PDF. In this research, we focus on one of the most general

problems in data transformation, which is semi-structured text format transforma-

tion. The approaches based on the inputs provided by the users can be categorized into

2 types: (1) users specify the transformation steps (2) users only specify the results.

6.1.1 Specifying the transformation steps

To use this type of system, users should tell the system step by step how to perform

the transformation. This type of approach is often based on a domain specific language

(DSL) to hide the users from directly working with low-level programming languages,

which can save users the time in developing transformation programs. Users can also

define their own high level functions to further save the time, such as Excel Macro

[Microsoft Excel] and OptiWrangler [Sujeeth et al., 2013]. Recent work in this category

78

focuses on providing intelligent user interfaces to accelerate the process of developing

DSL based programs, such as OpenRefine [Huynh and Stefano], Potter’s Wheel [Raman

and Hellerstein, 2001], SmartEdit Lau et al., 2003 and Data Wrangler [Kandel et al.,

2011], etc. They allow the users to specify edit operations in their GUI and view the

results as the users write the programs. OpenRefine is a tool for cleaning messy data.

Its language supports regular expression style of string transformation and data layout

transformation. Users can directly write scripts in the GUI and view the results imme-

diately. Potter’s Wheel defines a set of transformation operations and let users gradu-

ally build transformations by adding or undoing transformations in an interactive GUI.

SmartEdit can learn from a user’s edit operations and generate a sequence of text editing

programs using the version space algebra. Data Wrangler is an interactive tool for creat-

ing data transformation. It uses the transformation operations defined in Potter’s wheel.

It can learn, rank, and suggest the edit operations from users’ selections. Besides sup-

porting string level transformation, it also supports data layout transformation including

column split, column merge, fold and unfold.

Typically, since the users can specify the transformation steps, these approaches

usually can support a border range of transformations besides the semi-structured text

format transformation. Users also have more control and insight over the transformation

steps applied. Our approach is different from these systems as our approach only asks

users to provide the output without requesting specific steps from the users.

6.1.2 Specifying the transformation results

The recent PBE approaches [Gulwani, 2011; Singh and Gulwani, 2012a; Le and Gul-

wani, 2014; Harris and Gulwani, 2011] only require users to provide target outputs.

These approaches require examples from users and synthesize programs that are con-

sistent with these examples. These systems enable users to focus on using their data

79

without spending time in figuring out how to transform the data. However, since these

approaches synthesize the complete programs automatically, the DSL’s expressiveness

is often restricted to ensure the programs can be synthesized efficiently. Our approach

belongs to this category. The differences will be discussed in more details in the follow-

ing section.

6.2 PBE approaches for data transformation

PBE approaches have been extensively studied for the past decades. Early work [Kush-

merick, 1997; Hsu and Dung, 1998; Muslea et al., 1999] in wrapper induction learns

extraction rules from user labels to extract target fields from documents. Lau et al.,

2003 proposed an approach to derive text-editing programs from a sequence of user edit

operations. However, these approaches typically require separate labels for each field or

labels for each step.

Much work also has been done in inductive programming [Kitzelmann, 2009] to

synthesize programs from examples. The pioneering work in program induction [Sum-

mers, 1977] can induce Lisp programs with one recursive function from the traces of

input-output pairs. Kitzelmann and Schmid, 2006 extended this approach to induce a

set of recursive equations with more than one recursive call. MIS [Shapiro, 1981] uses

first order logic to represent the examples and induced programs. Recently, Muggleton

and Lin, 2013 developed an meta-interpretive learning technique, which support recur-

sion and is able to learn new predicates. These new predicates can be used to expand the

set of predefined functions in DSL. Lin et al., 2009 applied this technique to successfully

generate string transformation programs.

Compared to the existing PBE approaches, our approach utilizes the information

from previous iterations in generating data transformation programs. By exploiting the

80

information, our approach improves the performance of the existing approaches in three

key components: (1) learning the conditional statements (2) synthesizing the branch

programs and (3) the user interface.

6.2.1 Learning Conditional Statements

The closely related PBE approaches that involve learning conditional statements are

as follows. SMARTpython [Lau, 2001] learns programs using a subset of the python

programming language through user demonstration, which supports conditionals, loops

and arrays. But it only allows the if-else clause. Data Wrangler [Kandel et al., 2011]

learns a parameter set from the user interaction to recognize whether a row, column or

a cell is the target that should be transformed. This is essentially a binary classifier.

Our approach is different from the two approaches as our approach learns a multi-class

conditional statement. It can include more than two branches in the program indicating

it can handle more than two kinds of inputs at the same time.

APE [Ruvini and Dony, 2000] is a programming assistant, which can recognize pro-

grammer’s repetitive actions under certain situations. It can then suggest performing

these repetitive tasks for the programmer when it is in the same situation. It learns a

situation pattern to recognize the precondition of the repetitive actions so that it could

automatically suggest those operations when the pattern matches. Gulwani, 2011 devel-

oped an approach that directly learns a set of binary classifiers to recognize whether an

input matches a certain format. As it has multiple binary classifiers, it can also handle

multiple formats at the same time. However, the classifiers used in Gulwani, 2011 are

built based on conjunction or disjunction of a predefined set of predicates, which makes

it hard to express the nominal values of the features, such as the counts of different

tokens.

81

Since our approach also uses the collected constraints to learn a distance metric for

partitioning the examples and learning the conditionals, we also review the related dis-

tance metric learning work here. There is a large body of work in metric learning [Yang

and Jin, 2006]. Researchers applied distance metric learning in various clustering algo-

rithms. Xing et al., 2002 proposed learning a Mahalanobis distance metric and applied

it in a K-means algorithm. Davidson and Ravi, 2009 investigated applying instance-

level must-link and cannot-link constraints in agglomerative clustering, which shows

the feasibility of the problem. Bade and Nurnberger, 2006 described an approach that

learned a distance metric to perform agglomerative clustering by introducing relative

instance-level constraints. Zhao and Qi, 2010 extended instance-level constraints to

order constraints to capture the hierarchical side information. Zheng and Li, 2011 used

the triple-wise relative constraint, which is a special case of the order constraints. They

then applied a ultra-metric dendrogram distance to improve effectiveness and efficiency

of the hierarchical clustering. Our approach is different from previous approaches as

we first applied must-merge and cannot-merge constraints in distance metric learning,

which describes the relationships among groups of instances instead of pairwise or rel-

ative pairwise constraints. Moreover, we first applied this semi-supervised clustering

approach in the program synthesis setting, which can effectively utilize constraints to

improve the system performance.

6.2.2 Adapting Program With New Examples

More recently, several approaches show that reusing the previous subprograms is

promising. Perelman et al., 2014 focuses on developing an approach to synthesize

programs for various domains given the DSL. Their approach can reuse previous sub-

programs. It maintains two sets: (1) one set, called contexts, containing the programs

with some of its subprograms deleted to create holes and (2) the other set containing

82

all the subprograms from previously generated programs. Through filling the subpro-

grams of the second set into the holes in the contexts of the first set, it can create new

programs. Lin et al., 2014 uses the meta-interpretive learning framework [Muggleton

and Lin, 2013] to learn domain specific bias. By reusing the predicates generated from

other tasks or previous iterations, their approach can use fewer examples and generate

programs more efficiently. Our work is orthogonal to these works. These works focus

on maintaining a library of previous generated subprograms and reusing these programs

when encountering new examples. As the number of subprograms in the library keeps

increasing, searching in this library for the right subprograms can be time consuming.

Our approach takes advantage of traces to deterministically identify, refine incorrect

subprograms, and reuse correct subprograms.

A closely related area of program adaptation is program bug repair. Shapiro, 1991

developed an approach to deterministically adapt programs with new evidence using

resolution-tree backtracking. Recently, approaches using generic programming to gen-

erate fairly complicated software patches have been applied to automatic bug fixes

[Weimer et al., 2010; Goues et al., 2012]. These approaches often require either an

oracle to test whether certain parts of the program are correct or require a large number

of test cases to locate the problem. Our approach is different from these approaches

as it automatically creates the expected outputs for the subprograms using the given

examples.

6.2.3 User interface

Our user interface is intended to help users verify the correctness of the results with

minimal effort. Closely related work generally performs the transformation result veri-

fication based on two strategies: (1) adapting existing white-box testing techniques and

83

(2) shifting users’ attention to potential incorrect records and let users examine these

records.

The most noticeable work in the first category is “What You See is What You Test”

(WYSWYT). Rothermel et al., 2001, 1997 developed an approach to test spreadsheet

programs by asking users to provide test cases through validating the correctness of the

outputs for certain inputs. To ensure it has obtained enough test cases, their approach

proposed a code-based criterion called definition-use coverage to find the values that

users should validate. Furthermore, Burnett et al., 2003 introduced assertions into end-

user program testing. It allows users to specify their expectations and convert them into

assertions. Our work is different from these works as the learned program changes when

users provide a new example. Our approach updates the test plan for the new program

by updating the minimal test set and recommendation list. Moreover, recommended

records can also help users explore the dataset to allow them to notice the unexpected

inputs to refine their programs, which is more related to helping users understand the

problem requirements rather than merely testing.

The second type of work identifies potentially incorrect results based on certain

predefined heuristics. Gulwani, 2011 can highlight the entries that have two or more

alternative transformed results. This method generates multiple programs and evaluates

these programs on all the records to identify the records with different results. Cue-

Flik [Amershi et al., 2009] shows users an overview of the learned concept. Users can

examine this overview to provide new examples. This overview is essentially a high

level abstraction of the instances in the image feature space. LAPIS [Miller and Myers,

2001] highlights the texts that have potentially incorrect matches. Their approach iden-

tifies the matches that are different from the majority of matches. Wolfman et al., 2001

extended the approach by Lau et al., 2003 by reducing the user effort using a mixed ini-

tiative approach combining several interaction modes. Compared to these approaches,

84

our approach first focus on a large dataset with thousands of records. Moreover, to

address the users’ over-confidence, our approach asks users to validate a minimal set

of records. Our previous version of the system [Wu et al., 2014] only recommends

one potentially incorrect record for users to examine and the recommendation is only

based on the distance from the records to the examples. Our current approach extends

the previous version of the system to handle large datasets. It can recommend multiple

records and learn the task-dependent rules for identifying incorrect records for specific

scenarios.

85

Chapter 7

Conclusion

PBE approaches enable people to transform the data without coding. However, current

PBE approaches face the challenge that they should synthesize correct programs for

large datasets with various formats in real time. To address this challenge, we developed

an iterative PBE approach (IPBE) for data transformation.

Our approach is based on an observation that users interact with the system in an

iterative way. The transformation process usually consists of several iterations of trans-

forming and verifying the results before transforming the data into the right format.

During every iteration, a program consistent with the given examples is generated to

transform the data. Based on this observation, our approach generates a program based

on both (1) current examples and (2) the information collected from previous iterations.

By utilizing the information, our approach can generate programs efficiently for het-

erogeneous data with a few examples. It also enables users to effectively examine the

results and obtain the correct program with less effort compared to a start-of-the-art

approach [Gulwani, 2011].

The list of contributions of our approach is as below:

• efficiently learning accurate conditional statements by exploiting information

from previous iterations [Wu and Knoblock, 2014] (Chapter 3)

• incrementally synthesizing branch transformation programs efficiently by adapt-

ing programs from the previous iteration [Wu and Knoblock, 2015] (Chapter 4)

86

• maximizing the user correctness with minimal user effort on large datasets by

recommending potentially incorrect records [Wu et al., 2014] (Chapter 5).

With the performance improvement obtained by utilizing the information from pre-

vious iterations, many similar PBE approaches in other domains can adopt the same

idea to improve their performance. For example, table layout transformation [Harris

and Gulwani, 2011] can also leverage the previous intermediate results to improve the

performance in synthesizing layout transformation programs.

With our approach, synthesizing more complicated programs becomes practical,

which enables us to apply our approach to a board range of problems. For example,

our approach can efficiently learn powerful conditional statements directly from exam-

ples in real time without relying on background knowledge. Our approach can learn a

conditional statement that can recognize the text representation of 12 months and syn-

thesize programs to convert them into corresponding numbers. Our approach can also

learn programs from long and many examples. It enables users to directly work on many

problems that were not practical before. For example, users can provide examples for

several columns of data at the same time as shown in the Section 4.2.4. This allows

users to not only split or merge several columns in the spreadsheet but also change their

contents at the same time. Finally, our system is so far the only open-sourced program

that is based on Gulwani’s work [Gulwani, 2011]. Existing applications in the data

processing area can integrate our system as a new module to revolutionize the users’

experiences in data transformation.

7.1 Limitations and future work

Based on our experiences, we identified several limitations of existing PBE approaches

and we also believe these limitations provide opportunities for future work in this area.

87

7.1.1 Managing the user expectation

PBE approaches often give users a false impression that these systems can generate the

programs that are consistent with any given examples. In fact, whether the system can

successfully generate the programs largely depends on whether the DSL can express

those programs. Existing DSLs used in PBE systems still cannot fully support all the

common data transformation operations. Without informing users the capability of the

system beforehand and letting them understand the boundary of the system’s capability

through trial and error, the PBE systems would quickly lose users’ trust. To solve this

problem, one possible approach is to present the synthesized programs in a way that

users can easily understand. Through reading these programs, the users can gain insights

into the kinds of the programs that the PBE systems are capable of generating. Reading

these programs also helps the users to check whether the programs are the same as they

expected.

7.1.2 Incorporating external functions

DSL essentially specifies the organization of a limited number of predefined functions.

However, many existing transformation programs require the support of many third-

party functions or services. For example, unit conversion is very common in data trans-

formation, such as US dollars to Chinese RMB. Moreover, the conversion function is

changing constantly as the conversion rate fluctuates. To solve this problem, designing

a DSL containing all the functions may exceed existing systems’ computational power,

However, we can provide an approach that allows users to change the DSL by adding

or removing several third-party functions according to their own requirements. This can

significantly improve the functionality of existing approaches.

88

7.1.3 Handling user errors

Users tend to provide examples with errors. Moreover, it is hard for the users to realize

that it is their errors that cause the system to fail to generate expected results without

blaming the system. For example, a common error in entering examples is caused by

blank spaces. The users often unintentionally enters different number of blank spaces

in examples used for demonstrating the same transformation. It make the system treat

these examples as demonstrations for different transformations. The system then learns

incorrect conditional statements and branch programs. In the future, PBE approaches

should not treat the user-entered examples dogmatically. They should either provide

feedbacks to the users to inform them of a potentially incorrect example or guess the

most likely programs given examples with errors.

89

Bibliography

Amershi, S., Fogarty, J., Kapoor, A., and Tan, D. (2009). Overview based example
selection in end user interactive concept learning. In UIST. 6.2.3

Bade, K. and Nurnberger, A. (2006). Personalized hierarchical clustering. In WI. 6.2.1

Burnett, M. M., Cook, C. R., Pendse, O., Rothermel, G., Summet, J., and Wallace, C. S.
(2003). End-user software engineering with assertions in the spreadsheet paradigm.
In ICSE. 6.2.3

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm. 3.1.4, 2

Davidson, I. and Ravi, S. S. (2009). Using instance-level constraints in agglomerative
hierarchical clustering: Theoretical and empirical results. Data Min. Knowl. Discov.
3.2.4, 6.2.1

Desu, M. and Raghavarao, D., editors (1990). Sample size methodology. Academic
press Inc. 5.2

Feldman, R. and Sanger, J. (2006). Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press. 5

Freund, Y., Schapire, R. E., et al. (1996). Experiments with a new boosting algorithm.
In ICML. 5.3.2.3

Goues, C. L., Nguyen, T., Forrest, S., and Weimer, W. (2012). Genprog: A generic
method for automatic software repair. IEEE Trans. Software Eng. 6.2.2

Gulwani, S. (2011). Automating string processing in spreadsheets using input-output
examples. In POPL. 1.1, 1.2, 1.2, 2, 2.1.1, 3, 3.2, 3.2.2, 3.2.4, 4, 1, 4.2.2, 5, 6.1.2,
6.2.1, 6.2.3, 7

Harris, W. R. and Gulwani, S. (2011). Spreadsheet table transformations from examples.
In SIGPLAN. 4, 6.1.2, 7

90

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Hsu, C.-N. and Dung, M.-T. (1998). Generating finite-state transducers for semi-
structured data extraction from the web. Inf. Syst. 6.2

Huynh, D. F., Miller, R. C., and Karger, D. R. (2008). Potluck: Data mash-up tool for
casual users. Web Semant. 1.1

Huynh, D. F. and Stefano, M. OpenRefine http://openrefine.org. 6.1.1

Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. (2011). Wrangler: interactive visual
specification of data transformation scripts. In CHI. 1.1, 6.1.1, 6.2.1

Kitzelmann, E. (2009). Inductive programming: A survey of program synthesis tech-
niques. In Approaches and Applications of Inductive Programming, Third Interna-
tional Workshop, AAIP 2009, Edinburgh, UK, September 4, 2009. Revised Papers.
6.2

Kitzelmann, E. and Schmid, U. (2006). Inductive synthesis of functional programs: An
explanation based generalization approach. Journal of Machine Learning Research.
1, 4, 6.2

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi,
C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M. B., Rothermel, G., Shaw,
M., and Wiedenbeck, S. (2011). The state of the art in end-user software engineering.
ACM Comput. Surv. 1.1, 5

Kushmerick, N. (1997). Wrapper Induction for Information Extraction. PhD thesis,
University of Washington. 6.2

Lau, T. (2001). Programming by Demonstration: a Machine Learning Approach. PhD
thesis, University of Washington. 6.2.1

Lau, T., Wolfman, S. A., Domingos, P., and Weld, D. S. (2003). Programming by
demonstration using version space algebra. Mach. Learn. 1.1, 2, 4, 6.1.1, 6.2, 6.2.3

Le, V. and Gulwani, S. (2014). Flashextract: A framework for data extraction by exam-
ples. In PLDI. 6.1.2

Lieberman, H., editor (2001). Your Wish is My Command: Programming by Example.
Morgan Kaufmann Publishers Inc. 4, 5

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J., and Muggleton, S. (2014). Bias reformu-
lation for one-shot function induction. In ECAI. 4.2.1, 4.2.2, 4.2.3, 6.2.2

Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T. A. (2009). End-user programming
of mashups with vegemite. In IUI. 6.2

91

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the
National Institute of Sciences (Calcutta). 3.1.3

Microsoft Excel. Excel macro. https://support.office.com/en-in/article/Work-with-
macros-654cc76b-1c9c-4632-89e1-67230322e92f Last accessed: 2015-09-10. 6.1.1

Miller, R. C. and Myers, B. A. (2001). Outlier finding: Focusing user attention on
possible errors. In UIST. 5, 6.2.3

Muggleton, S. and Lin, D. (2013). Meta-interpretive learning of higher-order dyadic
datalog: Predicate invention revisited. In IJCAI. 6.2, 6.2.2

Muslea, I., Minton, S., and Knoblock, C. (1999). A hierarchical approach to wrapper
induction. In AGENTS. 6.2

Panko, R. R. (1998). What we know about spreadsheet errors. J. End User Comput. 5

Perelman, D., Gulwani, S., Grossman, D., and Provost, P. (2014). Test-driven synthesis.
In SIGPLAN. 6.2.2

Raman, V. and Hellerstein, J. M. (2001). Potter’s wheel: An interactive data cleaning
system. In VLDB. 6.1.1

Raza, M., Gulwani, S., and Milic-Frayling, N. (2014). Programming by example using
least general generalizations. In AAAI. 1.1, 4

Rothermel, G., Burnett, M., Li, L., Dupuis, C., and Sheretov, A. (2001). A methodology
for testing spreadsheets. ACM Trans. Softw. Eng. Methodol. 6.2.3

Rothermel, G., Li, L., DuPuis, C., and Burnett, M. (1997). What you see is what you
test: A methodology for testing form-based visual programs. Technical report. 6.2.3

Ruvini, J.-D. and Dony, C. (2000). Ape: Learning user’s habits to automate repetitive
tasks. In IUI. 6.2.1

Shapiro, E. Y. (1981). An algorithm that infers theories from facts. In IJCAI. 6.2

Shapiro, E. Y. (1991). Inductive inference of theories from facts. In Computational
Logic - Essays in Honor of Alan Robinson. 6.2.2

Singh, R. and Gulwani, S. (2012a). Learning semantic string transformations from
examples. Proc. VLDB Endow. 4, 6.1.2

Singh, R. and Gulwani, S. (2012b). Synthesizing number transformations from input-
output examples. In Proceedings of the 24th International Conference on Computer
Aided Verification. 4

92

Sujeeth, A. K., Gibbons, A., Brown, K. J., Lee, H., Rompf, T., Odersky, M., and Oluko-
tun, K. (2013). Forge: Generating a high performance dsl implementation from a
declarative specification. In Proceedings of the 12th International Conference on
Generative Programming: Concepts and Experiences. 6.1.1

Summers, P. D. (1977). A methodology for lisp program construction from examples.
J. ACM. 4, 6.2

Weimer, W., Forrest, S., Goues, C. L., and Nguyen, T. (2010). Automatic program repair
with evolutionary computation. Commun. ACM. 6.2.2

Wolfman, S. A., Lau, T. A., Domingos, P., and Weld, D. S. (2001). Mixed initiative
interfaces for learning tasks: Smartedit talks back. In IUI. 5, 6.2.3

Wu, B. and Knoblock, C. A. (2014). Iteratively learning conditional statements in trans-
forming data by example. In Proceedings of the First Workshop on Data Integration
and Application at the 2014 IEEE International Conference on Data Mining. 5.4.1.2,
7

Wu, B. and Knoblock, C. A. (2015). An iterative approach to synthesize data transfor-
mation programs. In IJCAI. 7

Wu, B., Szekely, P., and Knoblock, C. A. (2014). Minimizing user effort in transforming
data by example. In IUI. 6.2.3, 7

Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2002). Distance metric learning,
with application to clustering with side-information. In NIPS. 6.2.1

Yang, L. and Jin, R. (2006). Distance metric learning: A comprehensive survey. Michi-
gan State Universiy. 6.2.1

Zhao, H. and Qi, Z. (2010). Hierarchical agglomerative clustering with ordering con-
straints. In WKDD. 6.2.1

Zheng, L. and Li, T. (2011). Semi-supervised hierarchical clustering. In ICDM. 6.2.1

93

Appendix A

Appendix

The description of 30 scenarios used in my evaluation is list here. I only show two

records for each scenario as demonstration. The data can be accessed at https://

github.com/areshand/IJCAI2015. The latest code of IPBE is available as a

part of Karma at https://github.com/areshand/Web-Karma

Id File name Description Input Outputs

s1 1st dimension extract the 1st degrees

26” H x 24” W x 12.5” D 26

74” H x 31.5” W 74

s2 2nd dimension extract the 2nd degrees

26” H x 24” W x 12.5” D 24

74” H x 31.5” W 31.5

s3 3rd Data json extract the 3rd degrees

26” H x 24” W x 12.5” D 12.5

74” H x 31.5” W NULL

s4 avg year construct Excel avg function

1968 - 1970 avg(1968,1970)

1970 1970

s5 birth extract birth years

1835 - 1837 1835

born 1925. Made by Knoll 1925

s6 comic extract dates

Ravage 2099#24 (November, 1994) November, 1994

Fantastic Four Annual#26 (1993) 1993

s7 countries normalize names

U.S.A. USA

United States USA

s8 date semantic construct dates

Aug 29, 2011 29/8/2011

94

https://github.com/areshand/IJCAI2015
https://github.com/areshand/IJCAI2015
https://github.com/areshand/Web-Karma

June 21, 2003 21/6/2003

s9 s3 instate extract instate tuitions

$43,930 per year (full-time) 43,930

$11,704 per year (in-state); $29,016 per year (out-of-state) 11,704

s10 f1 complete addresses

1226 30 1226 30th st, Los Angeles, CA

3416 walton ave 3416 walton ave, Los Angeles, CA

s11 huston 2nd extract the 2nd degree

120 x 600 inches 600

22 x 16 1/8 x 5 1/4 inches 16 1/8

s12 huston 3rd extract the 3rd degrees

120 x 600 inches NULL

22 x 16 1/8 x 5 1/4 inches 5 1/4

s13 MOCA dimension extract the 2nd degrees

20 in HIGH x 24.25 in WIDE 24.25

29.25 in HIGH x 26.125 in WIDE x .75 in DEEP 26.125

s14 Organization encode texts

County G1

Hospital district or authority P2

s15 s10 namehyphen extract names

http://disney.wikia.com/wiki/Elsa the Snow Queen Elsa the Snow Queen

http://disney.wikia.com/wiki/Ursula Ursula

s16 s1 age extract ages

(1974-06-01) June 1, 1974 (age 39) 39

(1924-04-12)April 12, 1924 NULL

s17 s2 date extract dates

(1974-06-01) June 1, 1974 (age 39) 1974-06-01

(1924-04-12)April 12, 1924 1924-04-12

s18 death extract death years

1823-1880 1880

born 1925. Made by Knoll NULL

s19 s4 outstate extract outstate tuitions

$43,930 per year (full-time) NULL

$11,704 per year (in-state); $29,016 per year (out-of-state) 29,016

s20 s5 3rd extract the 3rd degrees

20 in HIGH x 24.25 in WIDE NULL

29.25 in HIGH x 26.125 in WIDE x .75 in DEEP .75

s21 s5 name construct names

Annica Ackerman Annica Ackerman

95

Jeff ”Bucko” Biggers Jeff Biggers

s22 s6 extract names

Despair Despair

Untitled (Grindelia) Grindelia

s23 s6 nickname extract nicknames

Annica Ackerman NULL

Jeff ”Bucko” Biggers Bucko

s24 s7 encode encode texts

300 or more 3

Between 100 and 299 2

s25 s8 construct names

Frishmuth, Harriet Whitney Harriet Whitney Frishmuth

Hopper, Edward Edward Hopper

s26 s8 website extract types

www.cascademedicalcenter.org org

www.uhs.net/cmh net

s27 s9 tel construct phone numbers

1-212-318-8000 (212) 318-8000

262.243.7408 (262) 243-7408

s28 senator name construct names

Sen. Lisa Murkowski [R-AK] Lisa Murkowski

Rep. Eric ”Rick” Crawford [R-AR1] Eric Crawford

s29 senator nickname extract nicknames

Sen. Lisa Murkowski [R-AK] NULL

Rep. Eric”Rick” Crawford [R-AR1] Rick

s30 uri construct names

dbpedia.org/resource/Virgin Express Virgin Express

dbpedia.org/resource/Lufthansa Lufthansa

96

